Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hexane normal phase

Nonpolar organic mobile phases, such as hexane with ethanol or 2-propanol as typical polar modifiers, are most commonly used with these types of phases. Under these conditions, retention seems to foUow normal phase-type behavior (eg, increased mobile phase polarity produces decreased retention). The normal mobile-phase components only weakly interact with the stationary phase and are easily displaced by the chiral analytes thereby promoting enantiospecific interactions. Some of the Pirkle-types of phases have also been used, to a lesser extent, in the reversed phase mode. [Pg.63]

The column was operated in the normal phase mode using mixtures of n-hexane and ethanol as the mobile phase. Equation (13) is validated by the curves relating the corrected retention volume to the reciprocal of the volume fraction of ethanol in Figure 19. It is seen that an excellent linear relationship is obtained between the corrected retention volume and the reciprocal of the volume fraction of ethanol. [Pg.114]

Gel permeation ehromatography (GPC)/normal-phase HPLC was used by Brown-Thomas et al. (35) to determine fat-soluble vitamins in standard referenee material (SRM) samples of a fortified eoeonut oil (SRM 1563) and a eod liver oil (SRM 1588). The on-line GPC/normal-phase proeedure eliminated the long and laborious extraetion proeedure of isolating vitamins from the oil matrix. In faet, the GPC step permits the elimination of the lipid materials prior to the HPLC analysis. The HPLC eolumns used for the vitamin determinations were a 10 p.m polystyrene/divinylbenzene gel eolumn and a semipreparative aminoeyano eolumn, with hexane, methylene ehloride and methyl tert-butyl ether being employed as solvent. [Pg.232]

Figure 12.18 LC-SFC analysis of mono- and di-laurates of poly (ethylene glycol) ( = 10) in a surfactant sample (a) normal phase HPLC trace (b) chromatogram obtained without prior fractionation (c) chromatogram of fraction 1 (FI) (d) chromatogram of fraction 2 (F2). LC conditions column (20 cm X 0.25 cm i.d.) packed with Shimpak diol mobile phase, w-hexane/methylene chloride/ethanol (75/25/1) flow rate, 4 p.L/min UV detection at 220 nm. SFC conditions fused-silica capillary column (15 m X 0.1 mm i.d.) with OV-17 (0.25 p.m film thickness) Pressure-programmed at a rate of 10 atm/min from 80 atm to 150 atm, and then at arate of 5 atm/min FID detection. Reprinted with permission from Ref. (23). Figure 12.18 LC-SFC analysis of mono- and di-laurates of poly (ethylene glycol) ( = 10) in a surfactant sample (a) normal phase HPLC trace (b) chromatogram obtained without prior fractionation (c) chromatogram of fraction 1 (FI) (d) chromatogram of fraction 2 (F2). LC conditions column (20 cm X 0.25 cm i.d.) packed with Shimpak diol mobile phase, w-hexane/methylene chloride/ethanol (75/25/1) flow rate, 4 p.L/min UV detection at 220 nm. SFC conditions fused-silica capillary column (15 m X 0.1 mm i.d.) with OV-17 (0.25 p.m film thickness) Pressure-programmed at a rate of 10 atm/min from 80 atm to 150 atm, and then at arate of 5 atm/min FID detection. Reprinted with permission from Ref. (23).
One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

When analytes lack the selectivity in the new polar organic mode or reversed-phase mode, typical normal phase (hexane with ethanol or isopropanol) can also be tested. Normally, 20 % ethanol will give a reasonable retention time for most analytes on vancomycin and teicoplanin, while 40 % ethanol is more appropriate for ristocetin A CSP. The hexane/alcohol composition is favored on many occasions (preparative scale, for example) and offers better selectivity for some less polar compounds. Those compounds with a carbonyl group in the a or (3 position to the chiral center have an excellent chance to be resolved in this mode. The simplified method development protocols are illustrated in Fig. 2-6. The optimization will be discussed in detail later in this chapter. [Pg.38]

Fig. 2-9. Chromatograms of phensuximide in normal phase on vancomycin (A), teicoplanin (B), ristocetin A (C), vancomycin + teicoplanin (D), ristocetin A + vancomycin (E), ristocetin A + teicoplanin (F), and ristocetin A + vancomycin + teicoplanin (G). All columns were 100 x 4.6 mm. The numbers by the peaks refer to the retention time in minutes. The mobile phase was ethanol hexane (60/40 v/v) and the flow rate was 1.5 mL min at ambient temperature (23 °C). Fig. 2-9. Chromatograms of phensuximide in normal phase on vancomycin (A), teicoplanin (B), ristocetin A (C), vancomycin + teicoplanin (D), ristocetin A + vancomycin (E), ristocetin A + teicoplanin (F), and ristocetin A + vancomycin + teicoplanin (G). All columns were 100 x 4.6 mm. The numbers by the peaks refer to the retention time in minutes. The mobile phase was ethanol hexane (60/40 v/v) and the flow rate was 1.5 mL min at ambient temperature (23 °C).
Fig. 2-11. The effect of flow rate on the selectivity of a-methyl-a-phenyl succinimide on teicoplanin CSP (250 X 4.6 mm) in normal phase. The mobile phase was ethanol hexane (20/80 v/v) at ambient temperature (23 °C). Fig. 2-11. The effect of flow rate on the selectivity of a-methyl-a-phenyl succinimide on teicoplanin CSP (250 X 4.6 mm) in normal phase. The mobile phase was ethanol hexane (20/80 v/v) at ambient temperature (23 °C).
Typical normal-phase operations involved combinations of alcohols and hexane or heptane. In many cases, the addition of small amounts (< 0.1 %) of acid and/or base is necessary to improve peak efficiency and selectivity. Usually, the concentration of polar solvents such as alcohol determines the retention and selectivity (Fig. 2-18). Since flow rate has no impact on selectivity (see Fig. 2-11), the most productive flow rate was determined to be 2 mL miiT. Ethanol normally gives the best efficiency and resolution with reasonable back-pressures. It has been reported that halogenated solvents have also been used successfully on these stationary phases as well as acetonitrile, dioxane and methyl tert-butyl ether, or combinations of the these. The optimization parameters under three different mobile phase modes on glycopeptide CSPs are summarized in Table 2-7. [Pg.52]

Another important issue that must be considered in the development of CSPs for preparative separations is the solubility of enantiomers in the mobile phase. For example, the mixtures of hexane and polar solvents such as tetrahydrofuran, ethyl acetate, and 2-propanol typically used for normal-phase HPLC may not dissolve enough compound to overload the column. Since the selectivity of chiral recognition is strongly mobile phase-dependent, the development and optimization of the selector must be carried out in such a solvent that is well suited for the analytes. In contrast to analytical separations, separations on process scale do not require selectivity for a broad variety of racemates, since the unit often separates only a unique mixture of enantiomers. Therefore, a very high key-and-lock type selectivity, well known in the recognition of biosystems, would be most advantageous for the separation of a specific pair of enantiomers in large-scale production. [Pg.61]

The nature of the modifier and the modifier concentration impact both retention and selectivity in packed column SFC. SFC offers considerable flexibility in modifier selection because nearly all commonly used organic modifiers, including methanol and acetonitrile, are miscible with CO,. In contrast, methanol and acetonitrile are rarely used as modifiers in normal phase LC because they are immiscible with hexane [68]. [Pg.311]

Eluent components should be volatile. Solvents such as ethyl acetate, isopropyl ether, diethylketone, chloroform, dichloromethane, and toluene as modifiers and n-hexane as diluent are recommended for normal phase chromatography. For reversed-phase systems, methanol or acetonitrile are used as modifiers. Such components as acetic acid or buffers, as well as ion association reagents, should be avoided. [Pg.284]

Oily crops such as soybeans and canola (oilseed rape) cannot be extracted with aqueous buffers, because the extraction solvent cannot permeate the hydrophobic plant tissue matrix. In these cases, homogenization in acetonitrile-hexane is recommended. This solvent mixture is able to extract sulfonylureas from these samples with a minimum of co-extracted oil. After extraction, the sulfonylureas partition into the acetonitrile phase while most of the oil stays in the hexane phase. Further cleanup is accomplished using a silica SPE cartridge and normal-phase conditions. [Pg.406]

To sort out the best conditions, you would need to do some experimental work. Fig. 4.31 (/) shows the reverse phase separation run with the suggested gradient. In Fig, 4.31 (ii) the normal phase separation starts with 10% dichloromethane in hexane. This is run isocratically for 3 minutes, then the proportion of dichloromethane... [Pg.231]

Fig. 14A-C Chromatography of the racemic monoepoxy derivatives (I—III) of Z3,Z6,Z9-18 on chiral HPLC columns A Chiralpak AD B Chiralpak AS C Chiralcel OJ-R. The solvent system for the former two normal-phase columns is 0.1% 2-propanol in n-hexane (0.45 ml/min), and that of the third column is 15% water in MeOH (0.45 ml/min). Homo-conjugated dienes, epo3,Z6,Z9-18 H (I) and Z3,Z6,epo9-18 H (III), were detected by UV (215 nm), and Z3,epo6,Z9-18 H (II) was detected by RID. The earlier eluting isomers have a 3S,4R, 6S,7R, or 9R,10S configuration... Fig. 14A-C Chromatography of the racemic monoepoxy derivatives (I—III) of Z3,Z6,Z9-18 on chiral HPLC columns A Chiralpak AD B Chiralpak AS C Chiralcel OJ-R. The solvent system for the former two normal-phase columns is 0.1% 2-propanol in n-hexane (0.45 ml/min), and that of the third column is 15% water in MeOH (0.45 ml/min). Homo-conjugated dienes, epo3,Z6,Z9-18 H (I) and Z3,Z6,epo9-18 H (III), were detected by UV (215 nm), and Z3,epo6,Z9-18 H (II) was detected by RID. The earlier eluting isomers have a 3S,4R, 6S,7R, or 9R,10S configuration...
Enantiomers of the 8,9-dichloro-2,3,4,4 ,5,6-hexahydro-177-pyrazino[l,2-tf]quinoxalin-5-one (structure 249 Rz = R3 = Cl R1 = R4 = H) could be separated by normal-phase, chiral high-performance liquid chromatography (HPLC) with increased retention and separation factors if ethoxynonafluorobutane was used as solvent, instead of -hexane <2001JCH(918)293>. [Pg.265]

Aboul-Enein and Ali [78] compared the chiral resolution of miconazole and two other azole compounds by high performance liquid chromatography using normal-phase amylose chiral stationary phases. The resolution of the enantiomers of ( )-econazole, ( )-miconazole, and (i)-sulconazole was achieved on different normal-phase chiral amylose columns, Chiralpak AD, AS, and AR. The mobile phase used was hexane-isopropanol-diethylamine (400 99 1). The flow rates of the mobile phase used were 0.50 and 1 mL/min. The separation factor (a) values for the resolved enantiomers of econazole, miconazole, and sulconazole in the chiral phases were in the range 1.63-1.04 the resolution factors Rs values varied from 5.68 to 0.32. [Pg.52]


See other pages where Hexane normal phase is mentioned: [Pg.78]    [Pg.71]    [Pg.2563]    [Pg.798]    [Pg.1852]    [Pg.78]    [Pg.71]    [Pg.2563]    [Pg.798]    [Pg.1852]    [Pg.66]    [Pg.98]    [Pg.306]    [Pg.408]    [Pg.40]    [Pg.74]    [Pg.445]    [Pg.139]    [Pg.351]    [Pg.454]    [Pg.215]    [Pg.226]    [Pg.94]    [Pg.210]    [Pg.234]    [Pg.543]    [Pg.54]    [Pg.88]    [Pg.126]    [Pg.108]    [Pg.555]    [Pg.375]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Hexane normal

Normal phase

© 2024 chempedia.info