Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalyst structure

Catalytic A catalytic-membrane reactor is a combination heterogeneous catalyst and permselective membrane that promotes a reaction, allowing one component to permeate. Many of the reactions studied involve H9. Membranes are metal (Pd, Ag), nonporous metal oxides, and porous structures of ceran iic and glass. Falconer, Noble, and Speriy [in Noble and Stern (eds.), op. cit., pp. 669-709] review status and potential developments. [Pg.2050]

Microporous catalysts are heterogeneous catalysts used in catalytic converters and for many other specialized applications, because of their very large surface areas and reaction specificity. Zeolites, for example, are microporous aluminosilicates (see Section 14.19) with three-dimensional structures riddled with hexagonal channels connected by tunnels (Fig. 13.38). The enclosed nature of the active sites in zeolites gives them a special advantage over other heterogeneous catalysts, because an intermediate can be held in place inside the channels until the products form. Moreover, the channels allow products to grow only to a particular size. [Pg.687]

As written. Equation 19 Implies a simultaneous loss of two sites of the same type. On a heterogeneous catalyst this is only realistic for adjacent sites, as has recently been suggested by Chien (15). Equation 19 assumes adjacent sites are the same species, which appears consistent with active site structural models appearing in the literature (17-18). Performing the same... [Pg.406]

There is a whole spectrum of heterogeneous catalysts, but the most common types consist of an inorganic or polymeric support, which may be inert or have acid or basic functionality, together with a bound metal, often Pd, Pt, Ni or Co. Even if the support is inert its structure is of vital importance to the efficiency of the catal ic reaction. Since the reactants are in a different phase to the catalyst both diffusion and adsorption influence the overall rate, these factors to some extent depending on the nature and structure of the support. [Pg.88]

The ability to produce threads, discs and spheres of defined size and structure will be of great importance when the very promising initial results from catalytic studies are applied on a larger scale. Processes using heterogeneous catalysts require the ability to control particle size and shape in order to ensure good mixing of all the reaction components, and separations after reaction. [Pg.73]

In heterogeneous catalysis, solids catalyze reactions of molecules in gas or solution. As solids - unless they are porous - are commonly impenetrable, catalytic reactions occur at the surface. To use the often expensive materials (e.g. platinum) in an economical way, catalysts are usually nanometer-sized particles, supported on an inert, porous structure (see Fig. 1.4). Heterogeneous catalysts are the workhorses of the chemical and petrochemical industry and we will discuss many applications of heterogeneous catalysis throughout this book. [Pg.7]

In Chapter 1 we emphasized that the properties of a heterogeneous catalyst surface are determined by its composition and structure on the atomic scale. Hence, from a fundamental point of view, the ultimate goal of catalyst characterization should be to examine the surface atom by atom under the reaction conditions under which the catalyst operates, i.e. in situ. However, a catalyst often consists of small particles of metal, oxide, or sulfide on a support material. Chemical promoters may have been added to the catalyst to optimize its activity and/or selectivity, and structural promoters may have been incorporated to improve the mechanical properties and stabilize the particles against sintering. As a result, a heterogeneous catalyst can be quite complex. Moreover, the state of the catalytic surface generally depends on the conditions under which it is used. [Pg.129]

High resolution electron microscopy has recently demonstrated the capability to directly resolve the atomic structure of surfaces on small particles and thin films. In this paper we briefly review experimental observations for gold (110) and (111) surfacest and analyse how these results when combined with theoretical and experimental morphological studies, influence the interpretation of geometrical catalytic effects and the transfer of bulk surface experimental data to heterogeneous catalysts. [Pg.341]

However, these techniques may not detect important phenomena taking place on the surface of or within the interior of individual Inm-to Ipm-diameter inorganic particles that are s3rnthesized specifically for their catalytic activity. AEM is an extremely useful technique for analysis of the individual heterogeneous catalyst particle and its relationship to various supporting materials. Structural and chemical analyses can be obtained from specimen regions nearly 1000 times smaller than those studied by conventional bulk analysis techniques. This high lateral spatial... [Pg.361]

This complex and structurally related molecules served as a functional homogeneous model system for commercially used heterogeneous catalysts based on chromium (e.g. Cp2Cr on silica - Union Carbide catalyst). The kinetics of the polymerization have been studied to elucidate mechanistic features of the catalysis and in order to characterize the potential energy surface of the catalytic reaction. [Pg.153]

It is clear that a molecular imderstanding of phenomena on surfaces, elementary steps, help to imderstand how to improve catalytic systems through a structure-activity relationship. While there is still room for improvement, it should lead, in the near future, to a more rational design of heterogeneous catalysts and to the apphcation of metals modified by surface organometalhc chemistry to a larger number of reactions. [Pg.203]


See other pages where Heterogeneous catalyst structure is mentioned: [Pg.206]    [Pg.356]    [Pg.91]    [Pg.140]    [Pg.206]    [Pg.356]    [Pg.91]    [Pg.140]    [Pg.299]    [Pg.444]    [Pg.15]    [Pg.41]    [Pg.155]    [Pg.156]    [Pg.161]    [Pg.287]    [Pg.213]    [Pg.129]    [Pg.180]    [Pg.73]    [Pg.89]    [Pg.121]    [Pg.123]    [Pg.157]    [Pg.184]    [Pg.189]    [Pg.341]    [Pg.6]    [Pg.27]    [Pg.52]    [Pg.66]    [Pg.231]    [Pg.71]    [Pg.73]    [Pg.109]    [Pg.118]    [Pg.152]    [Pg.36]    [Pg.328]    [Pg.335]    [Pg.369]    [Pg.209]    [Pg.772]   


SEARCH



Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Catalysts structured

Catalysts, structures

Heterogeneity structural

Heterogeneous structure

Heterogenized catalysts

© 2024 chempedia.info