Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hetero-Diels-Alder reaction complexes

Chiral Cu(II)-complexes as catalysts in hetero-Diels-Alder reaction 99PAC1407. [Pg.216]

The mechanism for the hetero-Diels-Alder reaction of benzaldehyde 9 with the very reactive diene, Danishefsky s diene 10, catalyzed by aluminum complexes has been investigated from a theoretical point of view using semi-empirical calculations [27]. The focus in this investigation was to address the question if the reaction proceeds directly to the hetero-Diels-Alder adduct 11, or if 11 is formed via a Mukaiyama aldol intermediate (Scheme 8.4) (see the chapter dealing with hetero-Diels-Alder reactions of carbonyl compounds). [Pg.316]

Another interesting scavenger is polymer-supported anthracene, developed by Porco for the scavenging of dienophiles [109]. An example of its application to the synthesis of a complex 5,8-dihydro-(l,2,4)triazolo[l,2-a]pyridazine-l,3-diones via hetero-Diels-Alder reaction followed by removal of the excess of triazole-3,5-dione under microwave irradiation is depicted in Scheme 24. For this particular example, moving from thermal heating (toluene, 100 °C) to a microwave-assisted protocol (DCE, 150 °C) reduced scavenging time from 3 h to just 15 min. [Pg.151]

The use of chiral bis(oxazoline) copper catalysts has also been often reported as an efficient and economic way to perform asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines with conjugated dienes [81], with the main focus on the application of this methodology towards the preparation of biologically valuable synthons [82]. Only some representative examples are listed below. For example, the copper complex 54 (Scheme 26) has been successfully involved in the catalytic hetero Diels-Alder reaction of a substituted cyclohexadiene with ethyl glyoxylate [83], a key step in the total synthesis of (i )-dihydroactinidiolide (Scheme 30). [Pg.118]

Jorgensen et al. [84] studied how solvent effects could influence the course of Diels-Alder reactions catalyzed by copper(II)-bisoxazoline. They assumed that the use of polar solvents (generally nitroalkanes) improved the activity and selectivity of the cationic copper-Lewis acid used in the hetero Diels-Alder reaction of alkylglyoxylates with dienes (Scheme 31, reaction 1). The explanation, close to that given by Evans regarding the crucial role of the counterion, is a stabilization of the dissociated ion, leading to a more defined complex conformation. They also used this reaction for the synthesis of a precursor for highly valuable sesquiterpene lactones with an enantiomeric excess superior to 99%. [Pg.118]

Similar transformations have been performed with Danishefsky s diene and glyoxylate esters [85] catalyzed by bis (oxazoHne)-metal complexes to afford the hetero Diels-Alder product in 70% isolated yield and up to 72% ee. Jorgensen [86,87] reported a highly enantioselective, catalytic hetero Diels-Alder reaction of ketones and similar chiral copper(II) complexes leading to enantiomeric excesses up to 99% (Scheme 31, reaction 2). They also described [88] a highly diastereo- and enantioselective catalytic hetero Diels-Alder reaction of /I, y-imsaturated a-ketoesters with electron-rich alkenes... [Pg.118]

Several groups have reported the use of rare earth complexes as catalysts for asymmetric Diels-Alder reaction. Qian and Wang described thus the preparation and use of Yb complexes chelated by Pr-PyBOx to successfully achieve the hetero-Diels-Alder reaction of methyl glyoxylate with Danishefsky s diene in 77% ee and 73% yield (Scheme 37) [98]. [Pg.123]

Scheme 5.13 Electropolymerised Cr-salen-complexes for hetero-Diels-Alder reactions. Scheme 5.13 Electropolymerised Cr-salen-complexes for hetero-Diels-Alder reactions.
The montmorillonite KlO-catalyzed aza-Diels-Alder reaction of Danishefsky s diene with aldimines, generated in situ from aliphatic aldehydes and p-anisidine, proceeded smoothly in H20 or in aqueous CH3CN to afford 2-substituted 2,3-dihydro-4-pyridones in excellent yields (Eq. 12.47).115 Also, complex [(PPh3)Ag(CBiiH6Br6)] was shown to be an effective and selective catalyst (0.1 mol% loading) for a hetero-Diels-Alder reaction with Danishefsky s diene and the reaction showed a striking dependence on the presence of trace amounts of... [Pg.402]

The domino Knoevenagel/hetero-Diels-Alder reaction is a prominent example of the great advantage of domino processes as it not only allows the efficient synthesis of complex compounds such as natural products starting from simple substrates, but also permits the preparation of highly diversified molecules. Due to the vast number of reports that have been made, only a few recent publications can be discussed here, although several excellent reviews on this topic have been produced that provide a more detailed insight into this useful method [372]. [Pg.161]

The combination of pericyclic transformations as cycloadditions, sigmatropic rearrangements, electrocydic reactions and ene reactions with each other, and also with non-pericyclic transformations, allows a very rapid increase in the complexity of products. As most of the pericyclic reactions run quite well under neutral or mild Lewis acid acidic conditions, many different set-ups are possible. The majority of the published pericyclic domino reactions deals with two successive cycloadditions, mostly as [4+2]/[4+2] combinations, but there are also [2+2], [2+5], [4+3] (Nazarov), [5+2], and [6+2] cycloadditions. Although there are many examples of the combination of hetero-Diels-Alder reactions with 1,3-dipolar cycloadditions (see Section 4.1), no examples could be found of a domino all-carbon-[4+2]/[3+2] cycloaddition. Co-catalyzed [2+2+2] cycloadditions will be discussed in Chapter 6. [Pg.280]

As with all-carbon Diels-Alder reactions, the hetero-Diels-Alder reaction [41] can also be used as the first step in many combinations with other transformations. In contrast to the normal Diels-Alder reaction, several examples are known where the first step is followed by a 1,3-dipolar cycloaddition. This type of domino reaction has been especially investigated by Denmark and coworkers, and used for the synthesis of several complex natural products. Since Denmark has reviewed his studies in... [Pg.296]

Schaus et al.41 have also reported an asymmetric hetero Diels-Alder reaction of Danishefsky s diene 10042 with aldehyde 101 catalyzed by chromium(III) complex 99 bearing a similar chiral salen ligand. Product 102 is obtained in moderate to good yield and stereoselectivity (Scheme 5-31 and Table 5-5). [Pg.292]

The C2-symmetric bis(oxazoline)-Cu(II) complexes have proved to be very effective in asymmetric aldol reactions (see Section 3.4.3), as well as Diels-Alder reactions (see Section 5.4.6). These compounds are also powerful catalysts in hetero Diels-Alder reactions. Figure 5-8 shows some of the bis(oxazoline) ligands applied in asymmetric hetero Diels-Alder reactions. [Pg.292]

Evans et al.43 and Thorhauge et al.44 report that hetero Diels-Alder reactions in the presence of 81 or 83 coordinated copper complex proceed smoothly, resulting in excellent yields and enantiomeric excess. [Pg.292]

Jorgensen s group44a carried out the reaction using the anhydrous form of chiral bis(oxazoline) coordinated copper complex. Complex 106 containing 83 as the chiral ligand was found to be the most effective. As shown in Scheme 5-32, the asymmetric hetero Diels-Alder reaction of //.y-unsaturated a-keto esters with acyclic enol ethers results in products with excellent yield and enantioselectivity. [Pg.292]

The copper complex of these bis(oxazoline) compounds can also be used for hetero Diels-Alder reactions of acyl phosphonates with enol ethers.43 5 A favorable acyl phosphonate-catalyst association is achieved via complexation between the vicinal C=0 and P=0 functional groups. The acyl phosphonates are activated, leading to facile cycloaddition with electron-rich alkenes such as enol ethers. The product cyclic enol phosphonates can be used as building blocks in the asymmetric synthesis of complicated molecules. Scheme 5-36 shows the results of such reactions. [Pg.296]

Bis(oxazoline)-type complexes, which have been found useful for asymmetric aldol reactions, Diels-Alder, and hetero Diels-Alder reactions can also be used for inducing 1,3-dipolar reactions. Chiral nickel complex 180, which can be prepared by reacting equimolar amounts of Ni(C10)4 6H20 and the corresponding (J ,J )-4,6-dibenzofurandiyl-2,2 -bis(4-phenyloxazoline) (DBFOX/Ph) in dichloromethane, can be used for highly endo-selective and enantioselective asymmetric nitrone cycloaddition. The presence of 4 A molecular sieves is essential to attain high selectivities.88 In the absence of molecular sieves, both the diastereoselectivity and enantioselectivity will be lower. Representative results are shown in Scheme 5-55. [Pg.311]

Figure 26. Proposed stereochemical model for the hetero-Diels-Alder reaction of ethyl vinyl ether and acylphosphonate catalyzed by 55c-Cu(II) complex. Figure 26. Proposed stereochemical model for the hetero-Diels-Alder reaction of ethyl vinyl ether and acylphosphonate catalyzed by 55c-Cu(II) complex.
Whiting and co-workers (231) reported that the chiral diamine 341Cu(OTf)2 complex is moderately effective in inducing the hetero-Diels-Alder reaction between glyoxylate imine (339) and Danishefsky s diene (334). In acetonitrile as solvent, this reaction provides cycloadduct 340 in 58% yield and 86% ee, Eq. 190. [Pg.113]

Table 12.9 Danishefsky hetero-Diels-Alder reaction catalyzed by PMS-supported rare-earth metal complexes. Table 12.9 Danishefsky hetero-Diels-Alder reaction catalyzed by PMS-supported rare-earth metal complexes.
Discrimination of the racemic aluminum reagent 4 can be carried out using chiral ketone 5, which deactivates one enantiomer of racemic 4. The hetero-Diels-Alder reaction is then catalyzed by the remaining opposite enantiomer of racemic 4 (Scheme 8.4). The combination of racemic 4 and chiral ketone 5 in a 1 1 ratio gives better enantiomeric excess than in a 2 1 ratio, implying that one diastereomer of the 4/5 complex readily dissociates to yield optically pure 4 and the chiral ketone 5. [Pg.224]

The enantiopure complex 35 has since been employed as an atropos asymmetric catalyst for a variety of synthetic transformations (Scheme 8.33)." In addition, the hetero Diels-Alder reaction of glyoxylate could also be catalyzed by enantiopure... [Pg.254]

The structural diversity (and complexity) of the products obtained by the MCR between tertiary isocyano amides, aldehydes, and amines could be increased to various heterocyclic scaffolds by combining the initial 2,4,5-tiisubstituted oxazole MCR with in situ intramolecular tandem processes (Fig. 17). Most tandem processes reported are based on the reactivity of the oxazole ring toward C=C or C=C bonds in hetero Diels-Alder reactions followed by ring opening reactions generating the rather complex heterocyclic products with high degrees of variation. [Pg.145]

Recently, the first examples of catalytic enantioselective preparations of chiral a-substituted allylic boronates have appeared. Cyclic dihydropyranylboronate 76 (Fig. 6) is prepared in very high enantiomeric purity by an inverse electron-demand hetero-Diels-Alder reaction between 3-boronoacrolein pinacolate (87) and ethyl vinyl ether catalyzed by chiral Cr(lll) complex 88 (Eq. 64). The resulting boronate 76 adds stereoselectively to aldehydes to give 2-hydroxyalkyl dihydropyran products 90 in a one-pot process.The diastereoselectiv-ity of the addition is explained by invoking transition structure 89. Key to this process is the fact that the possible self-allylboration between 76 and 87 does not take place at room temperature. Several applications of this three-component reaction to the synthesis of complex natural products have been described (see section on Applications to the Synthesis of Natural Products ). [Pg.39]

It has been shown that complete selectivity for the hetero-Diels-Alder cycloadduct 109 (100% endo, 60% ee) can be achieved in the hetero-Diels-Alder reaction of 1,3-cyclohexadiene 108 and ethyl glyoxylate 99 using ent-6 and copper(II) triflate derived catalyst complex. Another interesting reaction introduced by Jprgensen and co-workers was the reaction between 1,3-cyclohexadiene 108 and diethyl ketomalonate 110 to form cycloadduct 111 in 76% yield with an ee of 84% (Fig. 9.35b, p. 558). ... [Pg.555]

Ghosez and co-workers also presented a hetero-Diels-Alder reaction using a hetero-atom-containing diene 121 and the oxazolidinone 80a in the presence of bu-box 3 complexed with copper(II) triflate to afford the cycloadduct 122 in 80% yield (>99 1 exo/endo, 95% ee) as shown in Figure 9.38Z . ... [Pg.559]

Dihydrofuran reacts with /3,7-unsaturated a-keto esters with copper or zinc complex catalysts to generate furo[2,3-/ ]pyran derivatives in good yields with high stereoselectivity. The synthesis proceeds via an inverse electron demand hetero-Diels-Alder reaction <2000CC459>. [Pg.301]

Evans has reported that the cationic C2-symmetric chiral Lewis acid Cu(ll)bis(oxazoline) complex promotes the hetero-Diels-Alder reaction of 0 ,/3-unsaturated acyl phosphonates with enol ethers to give the cycloadducts with excellent ee (Scheme 52). As well as simple dihydropyrans, various fused bis-dihydropyrans are also reported <1998JA4895, 2000JA1635>. [Pg.737]


See other pages where Hetero-Diels-Alder reaction complexes is mentioned: [Pg.151]    [Pg.277]    [Pg.190]    [Pg.119]    [Pg.127]    [Pg.192]    [Pg.195]    [Pg.408]    [Pg.587]    [Pg.413]    [Pg.415]    [Pg.416]    [Pg.426]    [Pg.321]    [Pg.293]    [Pg.111]    [Pg.126]    [Pg.407]    [Pg.63]    [Pg.358]    [Pg.253]    [Pg.456]   
See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Chiral metal complexes hetero-Diels-Alder reaction

Diels hetero

Diels-Alder reaction complex

Hetero-Diels-Alder

Hetero-Diels-Alder reaction

Lanthanide complexes hetero-Diels-Alder reactions

© 2024 chempedia.info