Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helix termination motif

The helix termination motif may well be unique in containing so many special features of structural and functional importance in such a short length of sequence. Indeed, the experimental observation that the C-terminal end of segment 2B was a mutation hot spot that would lead to a large number of diseases (Parry and Steinert, 1999) was readily predictable on theoretical grounds. There are, as stated above, a multitude of key residues in this region that are involved in almost every aspect of the structure and assembly of IF molecules. [Pg.131]

The three-dimensional structural architecture of plant defensins is exemplified by the structure of Rs-AFP, ° which comprises an N-terminal /3-strand followed by an ct-helix and two /3-strands (/3a/3/3 configuration). The /3-strands form a triple-stranded antiparallel /3-sheet. The three-dimensional structure is stabilized by three disulfide bonds. In general, in plant defensins two disulfide bonds form between the ct-helix and the central /3-strand. A third disulfide bond stabilizes the structure by linking the /3-strand after the helix to the coiled part after the ct-helix. This motif is called the cysteine-stabilized a/3-motif (CSa/3)" and also occurs in toxins isolated from insects, spiders, and scorpions.The fourth disulfide bond links the C-terminal end of the peptide with the N-terminal /3-strand. Two plant defensins, PhDl and PhD2, feature a fifth disulfide bond and have been proposed to be the prototypes of a new subclass within plant defensins." As a result of these structural features the global structure of plant defensins is notably different from o //3-thionins, which is one of the reasons for the different nomenclature. The structures of plant defensins Rs-AFP ° and NaDf are shown in Figure 6, where they are compared to the thionin /3-purothionin and the structurally more related drosomycin and charybdotoxin. ... [Pg.263]

A leucine zipper has a leucine every seventh amino acid and forms an a-helix with the leucines presented on the same side of the helix every second turn, giving a hydrophobic surface. Two transcription factor monomers can interact via the hydrophobic faces of their leucine zipper motifs to form a dimer. The helix-loop-helix (HLH) motif contains two a-helices separated by a nonhelical loop. The C-terminal a-helix has a hydrophobic face two transcription factor monomers, each with an HLH motif, can dimerize by interaction between the hydrophobic faces of the two C-terminal a-helices. [Pg.188]

Also contained in the, 3-barrel structure of many PRMTs is a helix-turn-helix antenna motif that is involved in the formation of PRMT homodimers or homo-oligomers (Weiss et al., 2000). This dimerization usually occurs via hydrophobic contacts between the helix-turn-helix motif of one monomer and the N-terminal SAM binding domain of another (Weiss et al., 2000 Zhang et al, 2000). Several PRMTs have been shown to form either dimers or oligomers through this interaction, a process that is essential to their methyltransferase activity (Teyssier et al, 2002). [Pg.217]

Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]... Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]...
Figure 8.6 The N-terminal domain of lambda repressor, which binds DNA, contains 92 amino acid residues folded into five a helices. Two of these, a2 (blue) and a3 (red) form a helix-turn-hellx motif with a very similar structure to that of lambda Cro shown In Figure 8.4. The complete repressor monomer contains in addition a larger C-termlnal domain. (Adapted from C. Pabo and M. Lewis, Nature 298 443-447, 1982.)... Figure 8.6 The N-terminal domain of lambda repressor, which binds DNA, contains 92 amino acid residues folded into five a helices. Two of these, a2 (blue) and a3 (red) form a helix-turn-hellx motif with a very similar structure to that of lambda Cro shown In Figure 8.4. The complete repressor monomer contains in addition a larger C-termlnal domain. (Adapted from C. Pabo and M. Lewis, Nature 298 443-447, 1982.)...
The polypeptide chain of the 92 N-terminal residues is folded into five a helices connected by loop regions (Figure 8.6). Again the helices are not packed against each other in the usual way for a-helical structures. Instead, a helices 2 and 3, residues 33-52, form a helix-turn-helix motif with a very similar structure to that found in Cro. [Pg.133]

Figure 8.19 The a helices of the N-terminal region of the trp repressor are involved in subunit interactions and form a stable core in the middle of the dimer. Alpha helices 4-6, which include the helix-turn-helix motif, form two "head" regions at the two ends of the molecule. Alpha helix 3 connects the core to the head in both subunits. (Adapted from R.W. Schevitz et al., Nature 317 782-786, 1985.)... Figure 8.19 The a helices of the N-terminal region of the trp repressor are involved in subunit interactions and form a stable core in the middle of the dimer. Alpha helices 4-6, which include the helix-turn-helix motif, form two "head" regions at the two ends of the molecule. Alpha helix 3 connects the core to the head in both subunits. (Adapted from R.W. Schevitz et al., Nature 317 782-786, 1985.)...
Figure 8.21 Richardson-type diagram of the structure of one suhunit of the lac repressor. The polypeptide chain is arranged in four domains, an amino terminal DNA-hinding domain (red) with a helix-tum-helix motif, a hinge helix (purple), a large core domain which has two subdomains (green and hlue) and a C-terminal a helix. (Adapted from M. Lewis et al.. Science 271 1247-1254, 1996.)... Figure 8.21 Richardson-type diagram of the structure of one suhunit of the lac repressor. The polypeptide chain is arranged in four domains, an amino terminal DNA-hinding domain (red) with a helix-tum-helix motif, a hinge helix (purple), a large core domain which has two subdomains (green and hlue) and a C-terminal a helix. (Adapted from M. Lewis et al.. Science 271 1247-1254, 1996.)...
The polypeptide chain of the lac repressor subunit is arranged in four domains (Figure 8.21) an N-terminal DNA-hinding domain with a helix-turn-helix motif, a hinge helix which binds to the minor groove of DNA, a large core domain which binds the corepressor and has a structure very similar to the periplasmic arablnose-binding protein described in Chapter 4, and finally a C-terminal a helix which is involved in tetramerization. This a helix is absent in the PurR subunit structure otherwise their structures are very similar. [Pg.144]

Many biochemical and biophysical studies of CAP-DNA complexes in solution have demonstrated that CAP induces a sharp bend in DNA upon binding. This was confirmed when the group of Thomas Steitz at Yale University determined the crystal structure of cyclic AMP-DNA complex to 3 A resolution. The CAP molecule comprises two identical polypeptide chains of 209 amino acid residues (Figure 8.24). Each chain is folded into two domains that have separate functions (Figure 8.24b). The larger N-terminal domain binds the allosteric effector molecule, cyclic AMP, and provides all the subunit interactions that form the dimer. The C-terminal domain contains the helix-tum-helix motif that binds DNA. [Pg.146]

The side of the p sheet that faces away from DNA is covered by two long a helices. One of these helices contains a number of basic residues from the middle segment of the polypeptide chain while the second helix is formed by the C-terminal residues. Residues from these two helices and from the short loop that joins the two motifs (red in Figure 9.4) are likely candidates for interactions with other subunits of the TFIID complex, and with specific transcription factors. [Pg.154]

Figure 9.12 Schematic diagram of the structure of the heterodimeric yeast transcription factor Mat a2-Mat al bound to DNA. Both Mat o2 and Mat al are homeodomains containing the helix-turn-helix motif. The first helix in this motif is colored blue and the second, the recognition helix, is red. (a) The assumed structure of the Mat al homeodomain in the absence of DNA, based on Its sequence similarity to other homeodomains of known structure, (b) The structure of the Mat o2 homeodomain. The C-terminal tail (dotted) is flexible in the monomer and has no defined structure, (c) The structure of the Mat a 1-Mat a2-DNA complex. The C-terminal domain of Mat a2 (yellow) folds into an a helix (4) in the complex and interacts with the first two helices of Mat a2, to form a heterodimer that binds to DNA. (Adapted from B.J. Andrews and M.S. Donoviel, Science 270 251-253, 1995.)... Figure 9.12 Schematic diagram of the structure of the heterodimeric yeast transcription factor Mat a2-Mat al bound to DNA. Both Mat o2 and Mat al are homeodomains containing the helix-turn-helix motif. The first helix in this motif is colored blue and the second, the recognition helix, is red. (a) The assumed structure of the Mat al homeodomain in the absence of DNA, based on Its sequence similarity to other homeodomains of known structure, (b) The structure of the Mat o2 homeodomain. The C-terminal tail (dotted) is flexible in the monomer and has no defined structure, (c) The structure of the Mat a 1-Mat a2-DNA complex. The C-terminal domain of Mat a2 (yellow) folds into an a helix (4) in the complex and interacts with the first two helices of Mat a2, to form a heterodimer that binds to DNA. (Adapted from B.J. Andrews and M.S. Donoviel, Science 270 251-253, 1995.)...
The 12 residues between the second cysteine zinc ligand and the first histidine ligand of the classic zinc finger motif form the "finger region". Structurally, this region comprises the second p strand, the N-terminal half of the helix and the two residues that form the turn between the p strand and the helix. This is the region of the polypeptide chain that forms the main interaction area with DNA and these interactions are both sequence specific. [Pg.178]

Figure 39-15. The leucine zipper motif. A shows a helical wheel analysis of a carboxyl terminal portion of the DNA binding protein C/EBP. The amino acid sequence is displayed end-to-end down the axis of a schematic a-helix. The helical wheel consists of seven spokes that correspond to the seven amino acids that comprise every two turns of the a-helix. Note that leucine residues (L) occur at every seventh position. Other proteins with "leucine zippers" have a similar helical wheel pattern. B is a schematic model of the DNA binding domain of C/EBP. Two identical C/EBP polypeptide chains are held in dimer formation by the leucine zipper domain of each polypeptide (denoted by the rectangles and attached ovals). This association is apparently required to hold the DNA binding domains of each polypeptide (the shaded rectangles) in the proper conformation for DNA binding. (Courtesy ofS McKnight)... Figure 39-15. The leucine zipper motif. A shows a helical wheel analysis of a carboxyl terminal portion of the DNA binding protein C/EBP. The amino acid sequence is displayed end-to-end down the axis of a schematic a-helix. The helical wheel consists of seven spokes that correspond to the seven amino acids that comprise every two turns of the a-helix. Note that leucine residues (L) occur at every seventh position. Other proteins with "leucine zippers" have a similar helical wheel pattern. B is a schematic model of the DNA binding domain of C/EBP. Two identical C/EBP polypeptide chains are held in dimer formation by the leucine zipper domain of each polypeptide (denoted by the rectangles and attached ovals). This association is apparently required to hold the DNA binding domains of each polypeptide (the shaded rectangles) in the proper conformation for DNA binding. (Courtesy ofS McKnight)...

See other pages where Helix termination motif is mentioned: [Pg.130]    [Pg.130]    [Pg.131]    [Pg.130]    [Pg.130]    [Pg.131]    [Pg.472]    [Pg.257]    [Pg.1611]    [Pg.114]    [Pg.121]    [Pg.87]    [Pg.123]    [Pg.2232]    [Pg.446]    [Pg.449]    [Pg.350]    [Pg.156]    [Pg.154]    [Pg.987]    [Pg.698]    [Pg.360]    [Pg.2231]    [Pg.358]    [Pg.298]    [Pg.1908]    [Pg.2532]    [Pg.137]    [Pg.177]    [Pg.178]    [Pg.179]    [Pg.611]    [Pg.225]    [Pg.243]    [Pg.322]   


SEARCH



Helix termination

© 2024 chempedia.info