Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helium charge

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive force is due to charge fiuctuations in the surface and adsorbed molecules, such as mutually induced dipole moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus, most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium. [Pg.294]

The intensity of shading at any point represents the magnitude of 1, i.e. the probability of finding the electron at that point. This may also be called a spherical charge-cloud . In helium, with two electrons, the picture is the same, but the two electrons must have opposite spins. These two electrons in helium are in a definite energy level and occupy an orbital in this case an atomic orbital. [Pg.54]

The helium atom is similar to the hydrogen atom with the critical difference that there are two electrons moving in the potential field of a nucleus with a double positive charge (Z = 2) (Eig. 8-1). [Pg.235]

Although we are solving for one-electron orbitals, r /i and r /2, we do not want to fall into the trap of the last calculation. We shall include an extra potential energy term Vi to account for the repulsion between the negative charge on the first electron we consider, electron I, exerted by the other electron in helium, electron 2. We don t know where electron 2 is, so we must integrate over all possible locations of electron 2... [Pg.237]

Ernest O. Lawrence, inventor of the cyclotron) This member of the 5f transition elements (actinide series) was discovered in March 1961 by A. Ghiorso, T. Sikkeland, A.E. Larsh, and R.M. Latimer. A 3-Mg californium target, consisting of a mixture of isotopes of mass number 249, 250, 251, and 252, was bombarded with either lOB or IIB. The electrically charged transmutation nuclei recoiled with an atmosphere of helium and were collected on a thin copper conveyor tape which was then moved to place collected atoms in front of a series of solid-state detectors. The isotope of element 103 produced in this way decayed by emitting an 8.6 MeV alpha particle with a half-life of 8 s. [Pg.215]

As the universe expanded it cooled and the positively charged protons and helium nuclei com bined with electrons to give hydrogen and helium atoms Together hydrogen and helium account for 99% of the mass of the universe and 99 9% of its atoms Hydrogen is the most abundant element 88 6% of the atoms in the universe are hydrogen and 11 3% are helium... [Pg.6]

A positively charged subatomic particle equivalent to a helium nucleus (a). [Pg.642]

The reactions of deuterium, tritium, and helium-3 [14762-55-17, He, having nuclear charge of 1, 1, and 2, respectively, are the easiest to initiate. These have the highest fusion reaction probabiUties and the lowest reactant energies. [Pg.150]

Eig. 8. Cost of electricity (COE) comparison where represents capital charges, Hoperation and maintenance charges, and D fuel charges for the reference cycles. A, steam, light water reactor (LWR), uranium B, steam, conventional furnace, scmbber coal C, gas turbine combined cycle, semiclean hquid D, gas turbine, semiclean Hquid, and advanced cycles E, steam atmospheric fluidized bed, coal E, gas turbine (water-cooled) combined low heating value (LHV) gas G, open cycle MHD coal H, steam, pressurized fluidized bed, coal I, closed cycle helium gas turbine, atmospheric fluidized bed (AEB), coal J, metal vapor topping cycle, pressurized fluidized bed (PEB), coal K, gas turbine (water-cooled) combined, semiclean Hquid L, gas turbine... [Pg.421]

In 1903, Rutherford and associates were finally able to deflect the a-rays by electric and magnetic fields, showing that these are positively charged. Measurement of the charge-to-mass ratio indicated that a-rays were of atomic dimensions. In 1908 definitive experiments showed a-rays to be doubly chaiged helium atoms, ie, helium nuclei. [Pg.443]

Oil Contamination of Helium Gas. For more than 20 years, helium gas has been used in a variety of nuclear experiments to collect, carry, and concentrate fission-recoil fragments and other nuclear reaction products. Reaction products, often isotropically distributed, come to rest in helium at atmospheric concentration by coUisional energy exchange. The helium is then allowed to flow through a capillary and then through a pinhole into a much higher vacuum. The helium thus collects, carries, and concentrates products that are much heavier than itself, electrically charged or neutral, onto a detector... [Pg.367]

These are shown in Fig. 2.3 and illustrate most convincingly the various quantum shells and subshells described in the preceding section. The energy required to remove the I electron from an atom of hydrogen is 13.606 eV (i.e. 1312 kJ per mole of H atoms). This rises to 2372 kJ mol for He (Is-) since the positive charge on the helium nucleus is twice that of the... [Pg.24]

This is larger than the corresponding value for Li (57 kJ mol" ) but substantially smaller than the value for F (333kJmol" ). The hydride ion H" has the same electron configuration as helium but is much less stable because the single positive charge on the proton must now control the 2 electrons. The hydride ion is thus readily deformable and this constitutes a characteristic feature of its structural chemistry (see p. 66). [Pg.37]

Since the nucleus has positive charge, it attracts electrons (each with negative charge). If a nucleus attracts the number of electrons just equal to the nuclear charge, an electrically neutral atom is formed. Consider a nucleus containing two protons, a helium nucleus. When the helium atom has two electrons as well (2— charge), an electrically neutral helium atom results ... [Pg.86]

Helium, the second element in the periodic table, has atomic number 2. This means its nucleus contains two protons and has a 2+ charge. The neutral atom, then, contains two electrons. There are two stable isotopes, helium-4 and helium-3, but the helium found in nature is almost pure helium-4. Helium is found in certain natural gas fields and is separated as a by-product. Sources of helium are rare and most of the world supply is produced in the United States, mainly in Texas and Kansas. [Pg.91]

The experiment conducted by Rutherford and his co-workers involved bombarding gold foil with alpha particles, which are doubly charged helium atoms. The apparatus used in their experiment is shown in Figure 14-9. The alpha particles are produced by the radioactive decay of radium, and a narrow beam of these particles emerges from a deep hole in a block of lead. The beam of particles is directed at a thin metal foil, approximately 10,000 atoms thick. The alpha particles are delected by the light they produce when they collide with scintilltaion screens, which are zinc sulfide-covered plates much like the front of the picture tube in a television set. The screen... [Pg.244]

There are three common ways by which nuclei can approach the region of stability (1) loss of alpha particles (a-decay) (2) loss of beta particles (/3-decay) (3) capture of an orbital electron. We have already encountered the first type of radioactivity, a-decay, in equation (/0). Emission of a helium nucleus, or alpha particle, is a common form of radioactivity among nuclei with charge greater than 82, since it provides a mechanism by which these nuclei can be converted to new nuclei of lower charge and mass which lie in the belt of stability. The actinides, in particular, are very likely to decay in this way. [Pg.417]


See other pages where Helium charge is mentioned: [Pg.123]    [Pg.425]    [Pg.475]    [Pg.123]    [Pg.425]    [Pg.475]    [Pg.299]    [Pg.1356]    [Pg.1876]    [Pg.2389]    [Pg.2456]    [Pg.50]    [Pg.122]    [Pg.264]    [Pg.769]    [Pg.238]    [Pg.16]    [Pg.86]    [Pg.223]    [Pg.115]    [Pg.37]    [Pg.417]    [Pg.367]    [Pg.489]    [Pg.406]    [Pg.37]    [Pg.25]    [Pg.871]    [Pg.1050]    [Pg.31]    [Pg.86]    [Pg.87]    [Pg.87]    [Pg.88]    [Pg.89]    [Pg.124]   
See also in sourсe #XX -- [ Pg.389 , Pg.410 ]




SEARCH



Charge density helium atom

Helium electrical charge

Helium nuclear charge

© 2024 chempedia.info