Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat transfer, direct constant

Direct evaluation of the convective heat transfer coefficient (h ) of subjects clothed in undergarments and socks (normal ventilated environment) was achieved by observing the sublimation rate of naphthalene balls uniformly positioned three centimeters from the body surface. Equations were developed for prediction of h as a function of metabolic activity and posture, calculation o average skin temperature, and estimation of maximum evaporative heat losses from the body (U2 ). In another approach, the coefficients of dry heat transfer at varying wind speeds for nude and clothed sectional mannequins were determined (U3). At air flow rates above 2 m/sec, percentage contributions of individual body sections to total heat transfer remain constant for the nude and clothed mannequin, yet increased for normally uncovered units such as the face and hands. Generally, the ratio of total heat flow for the nude to clothed mannequin increased with air flow. [Pg.262]

Here we deduce bounds on the directions of irreversible transfers across the interface in Figure 7.4. We consider six processes workfree constant-mass heat transfer, adiabatic constant-mass work, isobaric constant-mass heat transfer, isothermal constant-mass work, isothermal-isobaric diffusion, and adiabatic-workfree diffusion. [Pg.272]

If a calorimetry experiment is carried out under a constant pressure, the heat transferred provides a direct measure of the enthalpy change of the reaction. Constant-volume calorimetry is carried out in a vessel of fixed volume called a bomb calorimeter. Bomb calorimeters are used to measure the heat evolved in combustion reactions. The heat transferred under constant-volume conditions is equal to A Corrections can be applied to A values to yield enthalpies of combustion. [Pg.195]

Note that in this special case, the heat absorbed directly measures a state fiinction. One still has to consider how this constant-volume heat is measured, perhaps by an electric heater , but then is this not really work Conventionally, however, if work is restricted to pressure-volume work, any remaining contribution to the energy transfers can be called heat . [Pg.345]

I ewton s Cooling L w of Heat Convection. The heat-transfer rate per unit area by convection is directly proportional to the temperature difference between the soHd and the fluid which, using a proportionaUty constant called the heat-transfer coefficient, becomes... [Pg.482]

In a recuperative heat exchanger, each element of heat-transferring surface has a constant temperature and, by arranging the gas paths in contra-flow, the temperature distribution in the matrix in the direction of flow is that giving optimum performance for the given heat-transfer conditions. This optimum temperature distribution can be achieved ideally in a con-tra-flow regenerator and approached very closely in a cross-flow regenerator. [Pg.65]

In the above example, 1 lb of initial steam should evaporate approximately 1 lb of water in each of the effects A, B and C. In practice however, the evaporation per pound of initial steam, even for a fixed number of effects operated in series, varies widely with conditions, and is best predicted by means of a heat balance.This brings us to the term heat economy. The heat economy of such a system must not be confused with the evaporative capacity of one of the effects. If operated with steam at 220 "F in the heating space and 26 in. vacuum in its vapor space, effect A will evaporate as much water (nearly) as all three effects costing nearly three times its much but it will require approximately three times as much steam and cooling water. The capacity of one or more effects in series is directly proportional to the difference between the condensing temperature of the steam supplied, and the temperature of the boiling solution in the last effect, but also to the overall coefficient of heat transfer from steam to solution. If these factors remain constant, the capacity of one effect is the same as a combination of three effects. [Pg.116]

For heat exchangers in true counter-current (fluids flowing in opposite directions inside or outside a tube) or true co-current (fluids flowing inside and outside of a tube, parallel to each other in direction), with essentially constant heat capacities of the respective fluids and constant heat transfer coefficients, the log mean temperature difference may be appropriately applied, see Figure 10-33. ... [Pg.76]

Another important case is where the heat flux, as opposed to the temperature at the surface, is constant this may occur where the surface is electrically heated. Then, the temperature difference 9S — o will increase in the direction of flow (x-direction) as the value of the heat transfer coefficient decreases due to the thickening of the thermal boundary layer. The equation for the temperature profile in the boundary layer becomes ... [Pg.690]

A variety of studies can be found in the literature for the solution of the convection heat transfer problem in micro-channels. Some of the analytical methods are very powerful, computationally very fast, and provide highly accurate results. Usually, their application is shown only for those channels and thermal boundary conditions for which solutions already exist, such as circular tube and parallel plates for constant heat flux or constant temperature thermal boundary conditions. The majority of experimental investigations are carried out under other thermal boundary conditions (e.g., experiments in rectangular and trapezoidal channels were conducted with heating only the bottom and/or the top of the channel). These experiments should be compared to solutions obtained for a given channel geometry at the same thermal boundary conditions. Results obtained in devices that are built up from a number of parallel micro-channels should account for heat flux and temperature distribution not only due to heat conduction in the streamwise direction but also conduction across the experimental set-up, and new computational models should be elaborated to compare the measurements with theory. [Pg.187]

In conductive heat transfer, the transfer is always in the direction of decreasing temperature and is proportional to the magnitude of the temperature gradient the constant of proportionality being the thermal conductivity of the system. [Pg.223]

The transport process abont which most of us have an intnitive nnderstanding is heat transfer so we will begin there. In order for heat to flow (from hot to cold), there must be a driving force, namely, a temperature gradient. The heat flow per unit area (Q/A) in one direction, say the y direction, is the heat flux, qy. The temperature difference per unit length for an infinitesimally small unit is the temperature gradient, dT/dy. According to Eq. (4.1), there is then a proportionality constant that relates these two quantifies, which we call the thermal conductivity, k. Do not confuse this quantity with... [Pg.285]

Figure 3.14. The lower ends of fractionators, (a) Kettle reboiler. The heat source may be on TC of either of the two locations shown or on flow control, or on difference of pressure between key locations in the tower. Because of the built-in weir, no LC is needed. Less head room is needed than with the thermosiphon reboiler, (b) Thermosiphon reboiler. Compared with the kettle, the heat transfer coefficient is greater, the shorter residence time may prevent overheating of thermally sensitive materials, surface fouling will be less, and the smaller holdup of hot liquid is a safety precaution, (c) Forced circulation reboiler. High rate of heat transfer and a short residence time which is desirable with thermally sensitive materials are achieved, (d) Rate of supply of heat transfer medium is controlled by the difference in pressure between two key locations in the tower, (e) With the control valve in the condensate line, the rate of heat transfer is controlled by the amount of unflooded heat transfer surface present at any time, (f) Withdrawal on TC ensures that the product has the correct boiling point and presumably the correct composition. The LC on the steam supply ensures that the specified heat input is being maintained, (g) Cascade control The set point of the FC on the steam supply is adjusted by the TC to ensure constant temperature in the column, (h) Steam flow rate is controlled to ensure specified composition of the PF effluent. The composition may be measured directly or indirectly by measurement of some physical property such as vapor pressure, (i) The three-way valve in the hot oil heating supply prevents buildup of excessive pressure in case the flow to the reboiier is throttled substantially, (j) The three-way valve of case (i) is replaced by a two-way valve and a differential pressure controller. This method is more expensive but avoids use of the possibly troublesome three-way valve. Figure 3.14. The lower ends of fractionators, (a) Kettle reboiler. The heat source may be on TC of either of the two locations shown or on flow control, or on difference of pressure between key locations in the tower. Because of the built-in weir, no LC is needed. Less head room is needed than with the thermosiphon reboiler, (b) Thermosiphon reboiler. Compared with the kettle, the heat transfer coefficient is greater, the shorter residence time may prevent overheating of thermally sensitive materials, surface fouling will be less, and the smaller holdup of hot liquid is a safety precaution, (c) Forced circulation reboiler. High rate of heat transfer and a short residence time which is desirable with thermally sensitive materials are achieved, (d) Rate of supply of heat transfer medium is controlled by the difference in pressure between two key locations in the tower, (e) With the control valve in the condensate line, the rate of heat transfer is controlled by the amount of unflooded heat transfer surface present at any time, (f) Withdrawal on TC ensures that the product has the correct boiling point and presumably the correct composition. The LC on the steam supply ensures that the specified heat input is being maintained, (g) Cascade control The set point of the FC on the steam supply is adjusted by the TC to ensure constant temperature in the column, (h) Steam flow rate is controlled to ensure specified composition of the PF effluent. The composition may be measured directly or indirectly by measurement of some physical property such as vapor pressure, (i) The three-way valve in the hot oil heating supply prevents buildup of excessive pressure in case the flow to the reboiier is throttled substantially, (j) The three-way valve of case (i) is replaced by a two-way valve and a differential pressure controller. This method is more expensive but avoids use of the possibly troublesome three-way valve.
This is a functional equation for the boundary position X and the unknown constant parameter n. Upon substituting Eq. (256) into Eq. (251) an ordinary differential equation is obtained for X(t, n), and a family of curves in the phase plane (X, X) can be obtained. For n sufficiently close to unity two functions in the phase plane can be determined which serve as upper and lower bounds for the trajectories. The choice is guided by reference to the exact solution for the limiting case of constant surface temperature. It is shown that the upper and lower bounds are quite close to the one-parameter phase plane solution, although no comparison is made with a direct numerical solution. The one-parameter solution also agrees well with experiments on the solidification of aluminum under conditions of low surface heat transfer coefficient (hi = 0.02 cm.-1). [Pg.127]

What problems face the theory of combustion The theory of combustion must be transformed into a chapter of physical chemistry. Basic questions must be answered will a compound of a given composition be combustible, what will be the rate of combustion of an explosive mixture, what peculiarities and shapes of flames should we expect We shall not be satisfied with an answer based on analogy with other known cases of combustion. The phenomena must be reduced to their original causes. Such original causes for combustion are chemical reaction, heat transfer, transport of matter by diffusion, and gas motion. A direct calculation of flame velocity using data on elementary chemical reaction events and thermal constants was first carried out for the reaction of hydrogen with bromine in 1942. The problem of the possibility of combustion (the concentration limit) was reduced for the first time to thermal calculations for mixtures of carbon monoxide with air. Peculiar forms of propagation near boundaries which arise when normal combustion is precluded or unstable were explained in terms of the physical characteristics of mixtures. [Pg.163]


See other pages where Heat transfer, direct constant is mentioned: [Pg.253]    [Pg.5]    [Pg.481]    [Pg.241]    [Pg.749]    [Pg.1193]    [Pg.32]    [Pg.503]    [Pg.98]    [Pg.844]    [Pg.82]    [Pg.329]    [Pg.474]    [Pg.319]    [Pg.498]    [Pg.215]    [Pg.288]    [Pg.309]    [Pg.24]    [Pg.258]    [Pg.496]    [Pg.46]    [Pg.777]    [Pg.99]    [Pg.334]    [Pg.274]    [Pg.481]    [Pg.45]    [Pg.54]    [Pg.247]    [Pg.215]   


SEARCH



Direct) Heat Transfer

© 2024 chempedia.info