Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat operating characteristic

The heat integration characteristics of reactors depend both on the decisions made for the removal or addition of heat and the reactor mixing characteristics. In the first instance, adiabatic operation is considered, since this gives the simplest design. [Pg.325]

Adiabatic operation. If adiabatic operation leads to an acceptable temperature rise for exothermic reactors or an acceptable fall for endothermic reactors, then this is the option normally chosen. If this is the case, then the feed stream to the reactor requires heating and the efiluent stream requires cooling. The heat integration characteristics are thus a cold stream (the reactor feed) and a hot stream (the reactor efiluent). The heat of reaction appears as elevated temperature of the efiluent stream in the case of exothermic reaction or reduced temperature in the case of endothermic reaction. [Pg.325]

Heat carriers. If adiabatic operation produces an unacceptable rise or fall in temperature, then the option discussed in Chap. 2 is to introduce a heat carrier. The operation is still adiabatic, but an inert material is introduced with the reactor feed as a heat carrier. The heat integration characteristics are as before. The reactor feed is a cold stream and the reactor efiluent a hot stream. The heat carrier serves to increase the heat capacity fiow rate of both streams. [Pg.325]

A mathematical model of the operating characteristics of a modem HLW storage tank has been developed (60). This model correlates experimental data for the rate of radiolytic destmction of nitric acid, the rate of hydrogen generation owing to radiolysis of water, and cooling coil heat transfer. These are all functions of nitric acid concentration and air-lift circulator operation. [Pg.207]

Operational Characteristics. Oxygen generation from chlorate candles is exothermic and management of the heat released is a function of design of the total unit iato which the candle is iacorporated. Because of the low heat content of the evolved gas, the gas exit temperature usually is less than ca 93°C. Some of the heat is taken up within the candle mass by specific heat or heat of fusion of the sodium chloride. The reacted candle mass continues to evolve heat after reaction ends. The heat release duting reaction is primarily a function of the fuel type and content, but averages 3.7 MJ/m (100 Btu/fT) of evolved oxygen at STP for 4—8 wt % iron compositions. [Pg.486]

Automated soldering operations can subject the mol ding to considerable heating, and adequate heat deflection characteristics ate an important property of the plastics that ate used. Flame retardants (qv) also ate often incorporated as additives. When service is to be in a humid environment, it is important that plastics having low moisture absorbance be used. Mol ding precision and dimensional stabiUty, which requites low linear coefficients of thermal expansion and high modulus values, ate key parameters in high density fine-pitch interconnect devices. [Pg.32]

Figure 27-37 shows the chief operating characteristics of a range of boilers, from small-scale heating systems to large-scale utility boilers. [Pg.2394]

For low-temperature heating systems using natural convective or radiant appliances the normal design water flow temperature to the system is 83°C (see also Table 27.8). Boost temperatures may be used on modulated-temperature systems because of the changes in heat output characteristics with varying temperatures. Additionally, comfort aspects must be borne in mind, as forced convective emitters operating on modulated temperature systems can deliver air streams at unacceptably low temperatures. [Pg.408]

Bonded silver linings are fabricated for mild steel or copper vessels. They are soldered in situ to the walls of the vessel by means of a special tin-silver solder. The melting point of this solder is approximately 280°C, and 200°C is recommended as the maximum continuous operating temperature for linings bonded with it. Since the whole of the silver is firmly adherent to the vessel, bonded linings are suitable for operation under vacuum conditions, and provide excellent heat-transfer characteristics. [Pg.935]

As far as extinction/ignition behavior is concerned, oxidations in micro reactors can exhibit varied temperature profiles [19, 56, 57, 59-61]. As a consequence of their very distinct heat transfer characteristics, micro reactors can allow autofhermal operation at a different temperature level compared with processing in conventional reactors. As an example, this may raise the selectivity of value products. [Pg.292]

In order to illustrate how the mode of operation can positively modify selectivity for a large reactor of poor heat-transfer characteristics, simulations of the reactions specified in Example 5.3.1.4 carried out in a semibatch reactor were performed. The reaction data and process conditions are essentially the same as those for the batch reactor, except that the initial concentration of A was decreased to cao = 0.46 mol litre, and the remaining amount of A is dosed (1) either for the whole reaction time of 1.5 h with a rate of 0.1 mol m s", or (2) starting after 0.5 h with a rate of 0.15 mol m " s". It is assumed that the volume of the reaction mixture and its physical properties do not change during dosing. The results of these simulations are shown in Fig. 5.3-15. The results of calculation for reactors of both types are summarized in Table 5.3-3. [Pg.221]

Cold shot. Injection of cold fresh feed for exothermic reactions or preheated feed for endothermic reactions to intermediate points in the reactor can be used to control the temperature in the reactor. Again, the heat integration characteristics are similar to adiabatic operation. The feed is a cold stream if it needs to be increased in temperature or vaporized and the product a hot stream if it needs to be decreased in temperature or condensed. If heat is provided to the cold shot or hot shot streams, these are additional cold streams. [Pg.439]

The next thing that is needed is a program that keeps track of all the process and utility streams, and determines the order in which the individual equipment calculations will be performed. This is sometimes referred to as the executive program. The user of this system has merely to put into computer language the flow diagram, which identifies the units (areas of heat exchangers, number of trays in a distillation column) and their interrelations, and to list the operating characteristics of each unit (the pressures, temperatures, exit compositions), the input variables to the plant... [Pg.418]

Truly isothermal operation of a tubular reactor may not be feasible in practice because of large enthalpies of reaction or poor heat transfer characteristics. Nor is it always desirable, as, for example, in the case of a reversible exothermic reaction (see Sect. 3.2.4). In an exothermic catalytic reaction, it may be necessary to provide adequate means for heat transfer to prevent the development of local hot-spots on which coking may occur and reduce the catalyst activity. An excessive temperature rise may also cause the catalyst particles to sinter, thereby reducing their surface area and causing an irreversible decrease in catalytic activity. [Pg.68]

D.I. Fotiadis, S. Kieda, and K.F. Jensen. Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy I. Effects of Heat Transfer Characteristics, Reactor Geometry, and Operating Conditions. J. Cryst. Growth, 102 441—470,1990. [Pg.821]


See other pages where Heat operating characteristic is mentioned: [Pg.326]    [Pg.43]    [Pg.460]    [Pg.505]    [Pg.509]    [Pg.332]    [Pg.436]    [Pg.351]    [Pg.513]    [Pg.164]    [Pg.209]    [Pg.474]    [Pg.1200]    [Pg.1212]    [Pg.1899]    [Pg.1163]    [Pg.435]    [Pg.80]    [Pg.392]    [Pg.255]    [Pg.415]    [Pg.599]    [Pg.620]    [Pg.24]    [Pg.619]    [Pg.97]    [Pg.2]    [Pg.226]    [Pg.273]    [Pg.139]    [Pg.131]   


SEARCH



Heat characteristics

Heat operation

Operating characteristic

Operational characteristics

Operator characteristics

© 2024 chempedia.info