Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat capacity kinetic

A practical difficulty in the application of such models to real reactors is the poor knowledge of the numerical values of the parameters involved (porosity, heat of reaction, thermal conductivity, heat capacity, kinetic parameters). [Pg.397]

Nonreversing heat capacity Kinetic heat capacity... [Pg.177]

Heat flow Differential scanning calorimetry (DSC) Phase change, adsorption, absorption, hydrogenation, dehydration, desorption, decomposition, dehydrogenation, reduction, oxidation, catalysis, heat capacity, kinetics,... [Pg.53]

The a-form, which crystallines as the kinetic product, is the commercial form of ammonium pentaborate tetrahydrate and the P-form is the thermodynamic product but is slow to crystalline. Its heat capacity has been measured over a broad temperature range (85). Solubihty data are given ia Table 9 and pH data ia Table 10. [Pg.206]

This rule conforms with the principle of equipartition of energy, first enunciated by Maxwell, that the heat capacity of an elemental solid, which reflected the vibrational energy of a tliree-dimensional solid, should be equal to 3f JK moH The anomaly that the free electron dreory of metals described a metal as having a tliree-dimensional sUmcture of ion-cores with a three-dimensional gas of free electrons required that the electron gas should add anodier (3/2)7 to the heat capacity if the electrons behaved like a normal gas as described in Maxwell s kinetic theory, whereas die quanmtii theory of free electrons shows that diese quantum particles do not contribute to the heat capacity to the classical extent, and only add a very small component to the heat capacity. [Pg.164]

Any variable or parameter that influences kinetics can be used if well-defined perturbation can be achieved. Temperature was the early favorite in kinetic studies, but in catalysis the heat capacity of the catalyst makes the response for temperature changes very sluggish. A sudden change in one or more of the product or reactant concentrations can be executed faster and usually gives a better response signal. [Pg.151]

The notion of concurrent SnI and Sn2 reactions has been invoked to account for kinetic observations in the presence of an added nucleophile and for heat capacities of activation,but the hypothesis is not strongly supported. Interpretations of borderline reactions in terms of one mechanism rather than two have been more widely accepted. Winstein et al. have proposed a classification of mechanisms according to the covalent participation by the solvent in the transition state of the rate-determining step. If such covalent interaction occurs, the reaction is assigned to the nucleophilic (N) class if covalent interaction is absent, the reaction is in the limiting (Lim) class. At their extremes these categories become equivalent to Sn and Sn , respectively, but the dividing line between Sn and Sn does not coincide with that between N and Lim. For example, a mass-law effect, which is evidence of an intermediate and therefore of the SnI mechanism, can be observed for some isopropyl compounds, but these appear to be in the N class in aqueous media. [Pg.429]

This implies that the specific heat is independent of the area of the surface, so that we need not consider any special heat capacity belonging to the surface itself. The interpretation is that surface energy is potential energy, not kinetic energy. [Pg.433]

One of the first attempts to calculate the thermodynamic properties of an atomic solid assumed that the solid consists of an array of spheres occupying the lattice points in the crystal. Each atom is rattling around in a hole at the lattice site. Adding energy (usually as heat) increases the motion of the atom, giving it more kinetic energy. The heat capacity, which we know is a measure of the ability of the solid to absorb this heat, varies with temperature and with the substance.8 Figure 10.11, for example, shows how the heat capacity Cy.m for the atomic solids Ag and C(diamond) vary with temperature.dd ee The heat capacity starts at a value of zero at zero Kelvin, then increases rapidly with temperature, and levels out at a value of 3R (24.94 J-K -mol-1). The... [Pg.569]

Extraordinarily precise kinetic data are required to detect the further temperature dependence of an activation parameter. If A// is temperature-dependent, then the temperature profile will be curved. By analogy with the equation relating AH and AC , we may define the heat capacity of activation by... [Pg.160]

The molar heat capacities of gases composed of molecules (as distinct from atoms) are Higher than those of monatomic gases because the molecules can store energy as rotational kinetic energy as well as translational kinetic energy. We saw in Section 6.7 that the rotational motion of linear molecules contributes another RT to the molar internal energy ... [Pg.354]

Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter]. Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter].
The kinetic equilibrium constant is estimated from the thermodynamic equilibrium constant using Equation (7.36). The reaction rate is calculated and compositions are marched ahead by one time step. The energy balance is then used to march enthalpy ahead by one step. The energy balance in Chapter 5 used a mass basis for heat capacities and enthalpies. A molar basis is more suitable for the current problem. The molar counterpart of Equation (5.18) is... [Pg.245]

Section V, other quantum effects are indeed present in the theory and we will discuss how these contribute both to the deviation of the conductivity from the law and to the way the heat capacity differs from the strict linear dependence, both contributions being in the direction observed in experiment. Finally, when there is significant time dependence of cy, the kinematics of the thermal conductivity experiments are more complex and in need of attention. When the time-dependent effects are included, both phonons and two-level systems should ideally be treated by coupled kinetic equations. Such kinetic analysis, in the context of the time-dependent heat capacity, has been conducted before by other workers [102]. [Pg.142]

We must stress, however, that the Black-Halperin analysis has been conducted for only a single substance, namely, amorphous silica, and systematic studies on other materials should be done. The discovered numerical inconsistency may well turn out to be within the deviations of the heat capacity and conductivity from the strict linear and quadratic laws, repsectively. Finally, a controllable kinetic treatment of a time-dependent experiment would be necessary. [Pg.174]

The state (or behaviour) of a system is described by variables or properties which may be classified as (a) extensive properties such as mass, volume, kinetic energy and (b) intensive properties which are independent of system size, e.g., pressure, temperature, concentration. An extensive property can be treated like an intensive property by specifying that it refers to a unit amount of the substance concerned. Thus, mass and volume are extensive properties, but density, which is mass per unit volume, and specific volume, which is volume per unit mass, are intensive properties. In a similar way, specific heat is an intensive property, whereas heat capacity is an extensive property. [Pg.226]

Since co2 =K/m, the mean potential and kinetic energy terms are equal and the total energy of the linear oscillator is twice its mean kinetic energy. Since there are three oscillators per atom, for a monoatomic crystal U m =3RT and Cy m =3R = 2494 J K-1 mol-1. This first useful model for the heat capacity of crystals (solids), proposed by Dulong and Petit in 1819, states that the molar heat capacity has a universal value for all chemical elements independent of the atomic mass and crystal structure and furthermore independent of temperature. Dulong-Petit s law works well at high temperatures, but fails at lower temperatures where the heat capacity decreases and approaches zero at 0 K. More thorough models are thus needed for the lattice heat capacity of crystals. [Pg.233]

MDSC is particularly useful for the study of reversible (related to the heat capacity) thermal reactions, and is less useful for non-reversing (kinetically controlled) reactions. Examples of reversible thermal events include glass transitions, heat capacity, melting, and enantiotropic phase transitions. Examples of non-reversible events include vaporization,... [Pg.114]

A sample of the polymer to be studied and an inert reference material are heated and cooled in an inert environment (nitrogen) according to a defined schedule of temperatures (scanning or isothermal). The heat-flow measurements allow the determination of the temperature profile of the polymer, including melting, crystallization and glass transition temperatures, heat (enthalpy) of fusion and crystallization. DSC can also evaluate thermal stability, heat capacity, specific heat, crosslinking and reaction kinetics. [Pg.170]


See other pages where Heat capacity kinetic is mentioned: [Pg.405]    [Pg.1917]    [Pg.342]    [Pg.502]    [Pg.193]    [Pg.248]    [Pg.295]    [Pg.295]    [Pg.342]    [Pg.65]    [Pg.36]    [Pg.592]    [Pg.600]    [Pg.437]    [Pg.215]    [Pg.191]    [Pg.9]    [Pg.33]    [Pg.231]    [Pg.264]    [Pg.89]    [Pg.65]    [Pg.162]    [Pg.169]    [Pg.98]    [Pg.210]    [Pg.90]   
See also in sourсe #XX -- [ Pg.9 , Pg.11 , Pg.12 , Pg.21 , Pg.54 , Pg.60 , Pg.67 ]




SEARCH



© 2024 chempedia.info