Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constant, kinetic

Oxidation potentials lead to a value of 7.9 x 10 for the equilibrium constant. Kinetic data for the reaction (from 0 to 55.6 °C) in acid perchlorate solutions (over the range 0.047-1.0 M) have been obtained spectrophotometrically by following the disappearance of V(V) (which absorbs strongly between 305 and 350 m/i) as a function of time. The second-order nature of the rate law... [Pg.154]

Total number of species Equilibrium constant Kinetic energy, energy Reaction rate constant Index of dependent reactions Length, length Mass, mass... [Pg.487]

K absorption coefficient bulk modulus equilibrium constant kinetic energy LIMS laser ionization mass spectroscopy laboratory information management system ... [Pg.87]

Separation procedures are based on the principles of volatilization, liquid-liquid distribution, adsorption, diffusion, chromatography, ion exchange, electrophoresis, precipitation, coprecipitation, and electrodeposition. In all of these, radio-tracers provide the best tool for methodological investigations, determination of equilibrium constants, kinetic data, and optimization of applied analytical data (yield, interference levels, etc.) [54], Use of radiotracers in complex multielement separation schemes is reviewed in [4], [17], [20]. [41], [54], radiochromatography is reviewed in [551. [61], [93], 197],... [Pg.136]

In Chapter 2 the Diels-Alder reaction between substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-ones (3.8a-g) and cyclopentadiene (3.9) was described. It was demonstrated that Lewis-acid catalysis of this reaction can lead to impressive accelerations, particularly in aqueous media. In this chapter the effects of ligands attached to the catalyst are described. Ligand effects on the kinetics of the Diels-Alder reaction can be separated into influences on the equilibrium constant for binding of the dienoplule to the catalyst (K ) as well as influences on the rate constant for reaction of the complex with cyclopentadiene (kc-ad (Scheme 3.5). Also the influence of ligands on the endo-exo selectivity are examined. Finally, and perhaps most interestingly, studies aimed at enantioselective catalysis are presented, resulting in the first example of enantioselective Lewis-acid catalysis of an organic transformation in water. [Pg.82]

All these facts—the observation of second order kinetics nucleophilic attack at the carbonyl group and the involvement of a tetrahedral intermediate—are accommodated by the reaction mechanism shown m Figure 20 5 Like the acid catalyzed mechanism it has two distinct stages namely formation of the tetrahedral intermediate and its subsequent dissociation All the steps are reversible except the last one The equilibrium constant for proton abstraction from the carboxylic acid by hydroxide is so large that step 4 is for all intents and purposes irreversible and this makes the overall reaction irreversible... [Pg.855]

Finally, a consideration of equilibrium chemistry can only help us decide what reactions are favorable. Knowing that a reaction is favorable does not guarantee that the reaction will occur. How fast a reaction approaches its equilibrium position does not depend on the magnitude of the equilibrium constant. The rate of a chemical reaction is a kinetic, not a thermodynamic, phenomenon. Kinetic effects and their application in analytical chemistry are discussed in Chapter 13. [Pg.175]

From a general point of view, the tautomeric studies can be divided into 12 areas (Figure 20) depending on the migrating entity (proton or other groups, alkyl, acyl, metals. ..), the physical state of the study (solid, solution or gas phase) and the thermodynamic (equilibrium constants) or the kinetic (isomerization rates) approach. [Pg.211]

The steric and electronic effects of substituents on the electrophilic attack at the nitrogen atom have been discussed in the general chapter on reactivity (Section 4.02.1.3). All the conclusions are valid for pyrazoles and indazoles. The effect on equilibrium constants will be discussed in detail in the sections dealing with values (Sections 4.04.2.1.3(iv) and (v)) and the kinetic effects on the rates of quaternization in the corresponding section (4.04.2.1.3(vii)). [Pg.223]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

Kinetic data provide information only about the rate-determining step and steps preceding it. In the hypothetical reaction under consideration, the final step follows the rate-determining step, and because its rate will not affect the rate of the overall reaction, will not appear in the overall rate expression. The rate of the overall reaction is governed by the second step, which is the bottleneck in the process. The rate of this step is equal to A2 multiplied by the molar concentration of intermediate C, which may not be directly measurable. It is therefore necessary to express the rate in terms of the concentrations of reactants. In the case under consideration, this can be done by recognizing that [C] is related to [A] and [B] by an equilibrium constant ... [Pg.194]

Scales for bases that are too weak to study in aqueous solution employ other solvents but are related to the equilibrium in aqueous solution. These equilibrium constants provide a measure of thermodynamic basicity, but we also need to have some concept of kinetic basicity. For the reactions in Scheme 5.4, for example, it is important to be able to make generalizations about the rates of competing reactions. [Pg.292]

The dehydration reactions have somewhat higher activation energies than the addition step and are not usually observed under strictly controlled kinetic conditions. Detailed kinetic studies have provided rate and equilibrium constants for the individual steps in some cases. The results for the acetone-benzaldehyde system in the presence of hydroxide ion are given below. Note that is sufficiently large to drive the first equilibrium forward. [Pg.470]

Radical substitution reactions by iodine are not practical because the abstraction of hydrogen from hydrocarbons by iodine is endothermic, even for stable radicals. The enthalpy of the overall reaction is also slightly endothermic. Thus, because of both the kinetic problem excluding a chain reaction and an unfavorable equilibrium constant for substitution, iodination cannot proceed by a radical-chain mechanism. [Pg.705]

Some chemical reactions are reversible and, no matter how fast a reaction takes place, it cannot proceed beyond the point of chemical equilibrium in the reaction mixture at the specified temperature and pressure. Thus, for any given conditions, the principle of chemical equilibrium expressed as the equilibrium constant, K, determines how far the reaction can proceed if adequate time is allowed for equilibrium to be attained. Alternatively, the principle of chemical kinetics determines at what rate the reaction will proceed towards attaining the maximum. If the equilibrium constant K is very large, for all practical purposes the reaction is irreversible. In the case where a reaction is irreversible, it is unnecessary to calculate the equilibrium constant and check the position of equilibrium when high conversions are needed. [Pg.59]

Both the principles of chemical reaction kinetics and thermodynamic equilibrium are considered in choosing process conditions. Any complete rate equation for a reversible reaction involves the equilibrium constant, but quite often, complete rate equations are not readily available to the engineer. Thus, the engineer first must determine the temperature range in which the chemical reaction will proceed at a... [Pg.59]

Equation 11-15 is known as the Michaelis-Menten equation. It represents the kinetics of many simple enzyme-catalyzed reactions, which involve a single substrate. The interpretation of as an equilibrium constant is not universally valid, since the assumption that the reversible reaction as a fast equilibrium process often does not apply. [Pg.839]

Some further uses of kinetics, less sweeping in their scope than the preceding applications, are for the testing of rate theories the measurement of equilibrium constants the analysis of solutions, including mixtures of solutes and the measurement of solvent properties that depend upon rates. Some of these applications are treated later in the book. [Pg.2]

Equation (5-43) has the practical advantage over Eq. (5-40) that the partition functions in (5-40) are difficult or impossible to evaluate, whereas the presence of the equilibrium constant in (5-43) permits us to introduce the well-developed ideas of thermodynamics into the kinetic problem. We define the quantities AG, A//, and A5 as, respectively, the standard free energy of activation, enthalpy of activation, and entropy of activation from thermodynamics we now can write... [Pg.207]

The numerical values of AG and A5 depend upon the choice of standard states in solution kinetics the molar concentration scale is usually used. Notice (Eq. 5-43) that in transition state theory the temperature dependence of the rate constant is accounted for principally by the temperature dependence of an equilibrium constant. [Pg.208]

The differenee in reaction rates of the amino alcohols to isobutyraldehyde and the secondary amine in strong acidic solutions is determined by the reactivity as well as the concentration of the intermediate zwitterions [Fig. 2, Eq. (10)]. Since several of the equilibrium constants of the foregoing reactions are unknown, an estimate of the relative concentrations of these dipolar species is difficult. As far as the reactivity is concerned, the rate of decomposition is expected to be higher, according as the basicity of the secondary amines is lower, since the necessary driving force to expel the amine will increase with increasing basicity of the secondary amine. The kinetics and mechanism of the hydrolysis of enamines demonstrate that not only resonance in the starting material is an important factor [e.g., if... [Pg.112]

Anhydrides and esters may differ in two ways. One may undergo nucleophilic addition more rapidly (kinetics), but the other may create a more favorable equilibrium constant for ester formation (thermodynamics). [Pg.151]

It is well accepted that tautomerism relates to the equilibrium between two or more different tautomers e.g., it corresponds to determining if the structure of a compound is, for instance, a pyridone or an hydroxypyridine. The kinetic aspects are often neglected and when the tautomeric equilibrium constant, Kt, is equal to 1 (e.g., for imidazole), the problem may seem... [Pg.6]

Lunazzi et al. [84JCS(P2)1025] reported the first reliable data on the behavior of 1,2,3-triazole 20 in solution (Scheme 21). Using NMR at 300 MHz and lowering the temperature to -98°C they determined not only the equilibrium constant but all the thermodynamic and kinetic parameters = 0.55 kcal mol (CD2CI2) and 1.60 kcal moU (toluene-ds),... [Pg.45]

Such modifications can be produced either in the kinetic aspects (proton transfer) or in the equilibrium constant. Both effects are mediated by intramolecular hydrogen bonds. For instance, Navarro et al. (93MI69) showed that the rate of proton transfer between the two nitrogen atoms of pyrazole (annular tautomerism) is considerably reduced in macrocycles containing oxygen or nitrogen atoms in the macroring. [Pg.38]

A wide range of nitroxidcs and derived alkoxyamincs has now been explored for application in NMP. Experimental work and theoretical studies have been carried out to establish structure-property correlations and provide further understanding of the kinetics and mechanism. Important parameters are the value of the activation-deactivation equilibrium constant K and the values of kaa and (Scheme 9.17), the combination disproportionation ratio for the reaction of the nilroxide with Ihe propagating radical (Section 9.3.6.3) and the intrinsic stability of the nitroxide and the alkoxyamine under the polymerization conditions (Section 9.3.6.4). The values of K, k3Cl and ktieact are influenced by several factors.11-1 "7-"9 ... [Pg.472]


See other pages where Equilibrium constant, kinetic is mentioned: [Pg.606]    [Pg.530]    [Pg.270]    [Pg.356]    [Pg.105]    [Pg.91]    [Pg.105]    [Pg.82]    [Pg.606]    [Pg.530]    [Pg.270]    [Pg.356]    [Pg.105]    [Pg.91]    [Pg.105]    [Pg.82]    [Pg.813]    [Pg.2951]    [Pg.286]    [Pg.493]    [Pg.222]    [Pg.211]    [Pg.853]    [Pg.688]    [Pg.15]    [Pg.18]    [Pg.160]   
See also in sourсe #XX -- [ Pg.235 , Pg.237 , Pg.238 ]




SEARCH



Equilibrium constant kinetic determination

Equilibrium constant kinetic interpretation

Equilibrium constant steady state kinetics

Equilibrium constants surface reaction kinetics

Equilibrium kinetics

Kinetic Constants of the Flow-Equilibrium

Kinetic constants

Kinetic constants constant

Kinetic constants dissociation constant Equilibrium

Kinetics constant

© 2024 chempedia.info