Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree-Fock scheme

Unrestricted Hartree-Fock Scheme. Exchange Polarization. 313... [Pg.208]

The problem of finding the best approximation of this type and the best one-electron set y2t. . ., y>N is handled in the Hartree-Fock scheme. Of course, a total wave function of the same type as Eq. 11.38 can never be an exact solution to the Schrodinger equation, and the error depends on the fact that the two-electron operator (Eq. 11.39) cannot be exactly replaced by a sum of one-particle operators. Physically we have neglected the effect of the "Coulomb hole" around each electron, but the results in Section II.C(2) show that the main error is connected with the neglect of the Coulomb correlation between electrons with opposite spins. [Pg.224]

More abstractly the condition Tr (p+p ) = iV implies that the part of the Hilbert space defined by the projection operator p should be fully contained in the part defined by the projection operator p+. If we now vary p slightly so that this condition is no longer fulfilled, Eq. II.GO shows that the pure spin state previously described by the Slater determinant becomes mixed up with states of higher quantum numbers S = m+1,. . . . The idea of the electron pairing in doubly occupied orbitals is therefore essential in the Hartree-Fock scheme in order to secure that the Slater determinant really represents a pure spin state. This means, however, that, in the calculation of the best spin orbitals y>k(x), there is a new auxiliary condition of the form... [Pg.231]

The kinetic energy in the Hartree-Fock scheme is evidently too low, owing to the fact that we have assumed the existence of a simplified uncorrelated motion, whereas the particles in reality have much more complicated movements because of their tendency to avoid each other. The potential energy, on the other hand, comes out much too high in the HF scheme essentially due to the fact that we have compelled a pair of electrons with opposite spins together in the same orbital in space. [Pg.234]

The idea of constructing a good wave function of a many-particle system by means of an exact treatment of the two-particle correlation is also underlying the methods recently developed by Brueck-ner and his collaborators for studying nuclei and free-electron systems. The effective two-particle reaction operator and the self-consistency conditions introduced in this connection may be considered as generalizations of the Hartree-Fock scheme. [Pg.258]

In the three following sections we will try to sketch the mathematical foundation for the three approaches which are most closely connected with the Hartree-Fock scheme, namely the methods of superposition of configurations (a), correlated wave functions (b), and different orbitals for different spins (c). We will also discuss their main physical implications. [Pg.259]

This theorem follows from the antisymmetry requirement (Eq. II.2) and is thus an expression for Pauli s exclusion principle. In the naive formulation of this principle, each spin orbital could be either empty or fully occupied by one electron which then would exclude any other electron from entering the same orbital. This simple model has been mathematically formulated in the Hartree-Fock scheme based on Eq. 11.38, where the form of the first-order density matrix p(x v xx) indicates that each one of the Hartree-Fock functions rplt y)2,. . ., pN is fully occupied by one electron. [Pg.278]

In the ordinary Hartree-Fock scheme, the total wave function is approximated by a single Slater determinant and, if the system possesses certain symmetry properties, they may impose rather severe restrictions on the occupied spin orbitals see, e.g., Eq. 11.61. These restrictions may be removed and the total energy correspondingly decreased, if instead we approximate the total wave function by means of the first term in the symmetry adapted set, i.e., by the projection of a single determinant. Since in both cases,... [Pg.293]

New Method for Constructing Pure Spin Functions. Extended Hartree-Fock Scheme... [Pg.307]

It is now possible to formulate an extension of the conventional Hartree-Fock scheme by considering a wave function (25+1) IP which is a pure spin state and which is simply defined by the component of the single Slater determinant Eq. III. 133 as has the spin property required ... [Pg.309]

A common feature of the Hartree-Fock scheme and the two generalizations discussed in Section III.F is that all physical results depend only on the two space density matrices p+ and p, which implies that the physical and mathematical simplicity of the model is essentially preserved. The differences lie in the treatment of the total spin in the conventional scheme, the basic determinant is a pure spin function as a consequence of condition 11.61, in the unrestricted scheme, the same determinant is a rather undetermined mixture of different spin states, and, in the extended scheme, one considers only the component of the determinant which has the pure spin desired. [Pg.314]

It should also be observed that there exists an approximation which is "intermediate between the unrestricted and the extended Hartree-Fock scheme. In starting from the former, the energy is increased by the mixing in of unappropriate spin states, and it can hence be essentially improved by selecting the component of the pure spin desired. It is clear that the energy obtained... [Pg.314]

This means that one has to be extremely careful in making physical interpretations of the results of the unrestricted Hartree-Fock scheme, even if one has selected the pure spin component desired. In many cases, it is probably safer to carry out an additional variation of the orbitals for the specific spin component under consideration, i.e., to go over to the extended Hartree-Fock scheme. In the unrestricted scheme, one has obtained mathematical simplicity at the price of some physical confusion—in the extended scheme, the physical simplicity is restored, but the corresponding Hartree-Fock equations are now more complicated to solve. We probably have to accept these mathematical complications, since it is ultimately the physics of the system we are interested in. [Pg.315]

TABLE X. Different Expansion Methods and Extended Hartree-Fock Schemes g = l+ar12... [Pg.317]

In this review, we have mainly studied the correlation energy connected with the standard unrelativistic Hamiltonian (Eq. II.4). This Hamiltonian may, of course, be refined to include relativistic effects, nuclear motion, etc., which leads not only to improvements in the Hartree-Fock scheme, but also to new correlation effects. The relativistic correlation and the correlation connected with the nuclear motion are probably rather small but may one day become significant. [Pg.318]

In the physics and chemistry of many-particle systems comprising atoms, molecules, solid state, and nuclei, quantum mechanics has given very important contributions to the theory of both a qualitative and quantitative nature. The Hartree-Fock scheme has usually been considered as a rather sophisticated approach, but, if one seriously studies the typical errors listed in Tables I and II and Eqs. 11.83 and 11.84 it becomes clear that the qualitative aspects... [Pg.320]

Table X gives an idea of the strength of the various expansion methods, and it shows that, by using the principal term only, one can hardly expect to reach even the above-mentioned chemical margin, even if the wave function W gO(D) is actually very close in the helium case. This means that one has to rely on expansions in complete sets, and the construction of the modern electronic computers has fortunately greatly facilitated the numerical solution of secular equations of high order and the calculation of the matrix elements involved. For atoms, the development will probably go very fast, but, for small molecules one has first to program the conventional Hartree-Fock scheme in a fully self-consistent way for the computers, before the next step can be taken. For large molecules and crystals, the entire situation is much more complicated, and it will hence probably take a rather long time before one can hope to get a detailed understanding of the correlation phenomena in these systems. Table X gives an idea of the strength of the various expansion methods, and it shows that, by using the principal term only, one can hardly expect to reach even the above-mentioned chemical margin, even if the wave function W gO(D) is actually very close in the helium case. This means that one has to rely on expansions in complete sets, and the construction of the modern electronic computers has fortunately greatly facilitated the numerical solution of secular equations of high order and the calculation of the matrix elements involved. For atoms, the development will probably go very fast, but, for small molecules one has first to program the conventional Hartree-Fock scheme in a fully self-consistent way for the computers, before the next step can be taken. For large molecules and crystals, the entire situation is much more complicated, and it will hence probably take a rather long time before one can hope to get a detailed understanding of the correlation phenomena in these systems.
In the bibliography, we have tried to concentrate the interest on contributions going beyond the Hartree-Fock approximation, and papers on the self-consistent field method itself have therefore not been included, unless they have also been of value from a more general point of view. However, in our treatment of the correlation effects, the Hartree-Fock scheme represents the natural basic level for study of the further improvements, and it is therefore valuable to make references to this approximation easily available. For atoms, there has been an excellent survey given by Hartree, and, for solid-state, we would like to refer to some recent reviews. For molecules, there does not seem to exist something similar so, in a special list, we have tried to report at least the most important papers on molecular applications of the Hartree-Fock scheme, t... [Pg.324]

Lowdin, P.-O., Les electrons dans les metaux, Dixieme confirence Solvay, Bruxelles, 1954, p. 71. An extension of the Hartree-Fock scheme to include correlation effects. ... [Pg.343]

Among the many ways to go beyond the usual Restricted Hartree-Fock model in order to introduce some electronic correlation effects into the ground state of an electronic system, the Half-Projected Hartree-Fock scheme, (HPHF) proposed by Smeyers [1,2], has the merit of preserving a conceptual simplicity together with a relatively straigthforward determination. The wave-function is written as a DODS Slater determinant projected on the spin space with S quantum number even or odd. As a result, it takes the form of two DODS Slater determinants, in which all the spin functions are interchanged. The spinorbitals have complete flexibility, and should be determined from applying the variational principle to the projected determinant. [Pg.175]

This behaviour is a nice example of the symmetry dilemma in the conventional Hartree-Fock scheme and is intimately connected with the question of Hartree-Fock instability. [Pg.190]

The wave funetion obtained eorresponds to the Unrestricted Hartree-Fock scheme and beeomes equivalent to the RHF ease if the orbitals (t>a and (()p are the same. In this UHF form, the UHF wave funetion obeys the Pauli prineiple but is not an eigenfunction of the total spin operator and is thus a mixture of different spin multiplicities. In the present two-eleetron case, an alternative form of the wave funetion which has the same total energy, which is a pure singlet state, but whieh is no longer antisymmetric as required by thePauli principle, is ... [Pg.192]

Further improvements to the previous UHF schemes can be obtained by using the Projected (PHF) and Extended (EHF) Hartree-Fock schemes. Lowdin has shown that if one carries out a component analysis of the non-pure UHF wave function, there is at least... [Pg.193]

As a final comment, it is interesting to note that this FS(K) study of the hydrogen molecule offers a new and simple illustration of the behavior of sophisticated Hartree-Fock schemes like UHF, PHF and EHF. Furthermore, it provides a very efficient numerical example of instabilities in the standard Hartree-Fock method. It is important to see that the UHF, PHF and EHF schemes all correct the wrong RHF behavior and lead to the correct dissociation limit. However, the UHF and PHF schemes only correct the wave function for large enough interatomic distances and the effect of projection in the PHF scheme even results in a spurious minimum. The EHF scheme is thus the only one which shows a lowering of the energy with respect to RHF for all interatomic distances. [Pg.196]

As discussed above, it is impossible to solve equation (1-13) by searching through all acceptable N-electron wave functions. We need to define a suitable subset, which offers a physically reasonable approximation to the exact wave function without being unmanageable in practice. In the Hartree-Fock scheme the simplest, yet physically sound approximation to the complicated many-electron wave function is utilized. It consists of approximating the N-electron wave function by an antisymmetrized product4 of N one-electron wave functions (x ). This product is usually referred to as a Slater determinant, OSD ... [Pg.26]

Let us introduce another early example by Slater, 1951, where the electron density is exploited as the central quantity. This approach was originally constructed not with density functional theory in mind, but as an approximation to the non-local and complicated exchange contribution of the Hartree-Fock scheme. We have seen in the previous chapter that the exchange contribution stemming from the antisymmetry of the wave function can be expressed as the interaction between the charge density of spin o and the Fermi hole of the same spin... [Pg.48]

To understand how Kohn and Sham tackled this problem, we go back to the discussion of the Hartree-Fock scheme in Chapter 1. There, our wave function was a single Slater determinant SD constructed from N spin orbitals. While the Slater determinant enters the HF method as the approximation to the true N-electron wave function, we showed in Section 1.3 that 4>sd can also be looked upon as the exact wave function of a fictitious system of N non-interacting electrons (that is electrons which behave as uncharged fermions and therefore do not interact with each other via Coulomb repulsion), moving in the elfective potential VHF. For this type of wave function the kinetic energy can be exactly expressed as... [Pg.59]

Note that the operator fKS differs from the Fock operator f that we introduced in Section 1.3 in connection with the Hartree-Fock scheme only in the way the exchange and correlation potentials are treated. In the former, the non-classical contributions are expressed via the - in its exact form unknown - exchange-correlation potential Vxc, the functional derivative of Exc with respect to the charge density. In the latter, correlation is neglected... [Pg.109]

This diagram is written in the sense of the "restricted Hartree-Fock scheme 18>. In the "unrestricted Hartree-Fock 19> sense each orbital of radical B is singly" occupied and LU is higher and HO is lower than the restricted Hartree-Fock SO, respectively (cf. Chap. 1)... [Pg.52]

If no correlation is introduced (ec = 0), the KS equations reduce to the well known Xa method proposed by Slater22 as a simplification of the Hartree-Fock scheme with a local exchange operator ... [Pg.88]


See other pages where Hartree-Fock scheme is mentioned: [Pg.207]    [Pg.208]    [Pg.223]    [Pg.227]    [Pg.245]    [Pg.248]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.314]    [Pg.316]    [Pg.316]    [Pg.317]    [Pg.319]    [Pg.359]    [Pg.32]    [Pg.95]    [Pg.215]    [Pg.220]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



© 2024 chempedia.info