Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Classical harmonic oscillator

The normal-mode harmonic oscillator classical Hamiltonian is... [Pg.1024]

The classical mechanical RRKM k(E) takes a very simple fonn, if the internal degrees of freedom for the reactant and transition state are assumed to be hamionic oscillators. The classical sum of states for s harmonic oscillators is [16]... [Pg.1017]

The atomic harmonic oscillator follows the same frequency equation that the classical harmonic oscillator does. The difference is that the classical harmonic oscillator can have any amplitude of oscillation leading to a continuum of energy whereas the quantum harmonic oscillator can have only certain specific amplitudes of oscillation leading to a discrete set of allowed energy levels. [Pg.96]

Figure 1.13 Plot of potential energy, V(r), against bond length, r, for the harmonic oscillator model for vibration is the equilibrium bond length. A few energy levels (for v = 0, 1, 2, 3 and 28) and the corresponding wave functions are shown A and B are the classical turning points on the wave function for w = 28... Figure 1.13 Plot of potential energy, V(r), against bond length, r, for the harmonic oscillator model for vibration is the equilibrium bond length. A few energy levels (for v = 0, 1, 2, 3 and 28) and the corresponding wave functions are shown A and B are the classical turning points on the wave function for w = 28...
It is noteworthy that eq. (4.15a) is nothing but the linearized classical upside-down barrier equation of motion (8S/8x = 0) for the new coordinate x. Therefore, while x = 0 corresponds to the instanton, the nonzero solution to (4.15a) describes how the trajectory escapes from the instanton solution, when it deviates from it. The parameter X, referred to as the stability angle [Gutzwil-ler 1967 Rajaraman 1975], generalizes the harmonic-oscillator phase co, which would appear in (4.15), if CO, were a constant. The fact that X is real indicates the aforementioned instability of the instanton in two dimensions. Guessing that the determinant det( — -I- co, ) is a function of X only,... [Pg.63]

The square of the wavefunction is finite beyond the classical turrfing points of the motion, and this is referred to as quantum-mechanical tunnelling. There is a further point worth noticing about the quantum-mechanical solutions. The harmonic oscillator is not allowed to have zero energy. The smallest allowed value of vibrational energy is h/2jt). k /fj. 0 + j) and this is called the zero point energy. Even at a temperature of OK, molecules have this residual energy. [Pg.33]

To give a simple classical model for frequency-dependent polarizabilities, let me return to Figure 17.1 and now consider the positive charge as a point nucleus and the negative sphere as an electron cloud. In the static case, the restoring force on the displaced nucleus is d)/ AtteQO ) which corresponds to a simple harmonic oscillator with force constant... [Pg.286]

There is no classical analogue of it save the trivial case of the resonance of two similar harmonic oscillators. [Pg.35]

The change in the inner-sphere structure of the reacting partners usually leads to a decrease in the transition probability. If the intramolecular degrees of freedom behave classically, their reorganization results in an increase in the activation barrier. In the simplest case where the intramolecular vibrations are described as harmonic oscillators with unchanged frequencies, this leads to an increase in the reorganization energy ... [Pg.645]

The harmonic oscillator is an important system in the study of physical phenomena in both classical and quantum mechanics. Classically, the harmonic oscillator describes the mechanical behavior of a spring and, by analogy, other phenomena such as the oscillations of charge flow in an electric circuit, the vibrations of sound-wave and light-wave generators, and oscillatory chemical reactions. The quantum-mechanical treatment of the harmonic oscillator may be applied to the vibrations of molecular bonds and has many other applications in quantum physics and held theory. [Pg.106]

Finally, it is a weU-known result of quantum mechanics" that the wavefunctions of harmonic oscillators extend outside of the bounds dictated by classical energy barriers, as shown schematically in Figure 10.1. Thus, in situations with narrow barriers it can... [Pg.418]

A simple eigenvalue problem can be demonstrated by the example of two coupled oscillators. The system is illustrated in fug. 2. It should be compared with the classical harmonic oscillator that was treated in Section 5.2.2. Here also, the system will be assumed to be harmonic, namely, that both springs obey Hooke s law. The potential energy can then be written in the form... [Pg.89]

It should be evident that the expressions for the Laplace transforms of derivatives of functions can facilitate the solution of differential equations. A trivial example is that of the classical harmonic oscillator. Its equation of motion is given by Eq. (5-33), namely,... [Pg.147]

The classical harmonic oscillator in one dimension was illustrated in Seetfon 5.2.2 by the simple pendulum. Hooke s law was employed in the fSfin / = —kx where / is the force acting on the mass and k is the force constant The force can also be expressed as the negative gradient of a scalar potential function, V(jc) = for the problem in one dimension [Eq. (4-88)]. Similarly, the three-dimensional harmonic oscillator in Cartesian coordinates can be represented by the potential function... [Pg.278]

The energy of the one-dimensional, classical harmonic oscillator can be written in the form... [Pg.303]

Although Eqs. (4-1) and (4-2) have identical expressions as that of the classical rate constant, there is no variational upper bound in the QTST rate constant because the quantum transmission coefficient Yq may be either greater than or less than one. There is no practical procedure to compute the quantum transmission coefficient Yq- For a model reaction with a parabolic barrier along the reaction coordinate coupled to a bath of harmonic oscillators, the quantum transmission... [Pg.81]

Instead of the quantity given by Eq. (15), the quantity given by Eq. (10) was treated as the activation energy of the process in the earlier papers on the quantum mechanical theory of electron transfer reactions. This difference between the results of the quantum mechanical theory of radiationless transitions and those obtained by the methods of nonequilibrium thermodynamics has also been noted in Ref. 9. The results of the quantum mechanical theory were obtained in the harmonic oscillator model, and Eqs. (9) and (10) are valid only if the vibrations of the oscillators are classical and their frequencies are unchanged in the course of the electron transition (i.e., (o k = w[). It might seem that, in this case, the energy of the transition and the free energy of the transition are equal to each other. However, we have to remember that for the solvent, the oscillators are the effective ones and the parameters of the system Hamiltonian related to the dielectric properties of the medium depend on the temperature. Therefore, the problem of the relationship between the results obtained by the two methods mentioned above deserves to be discussed. [Pg.104]

Fig. 11.1. The Helmholtz free energy as a function of /3 for the three free energy models of the harmonic oscillator. Here we have set h = uj = 1. The exact result is the solid line, the Feynman-Hibbs free energy is the upper dashed line, and the classical free energy is the lower dashed line. The classical and Feynman-Hibbs potentials bound the exact free energy, and the Feynman-Hibbs free energy becomes inaccurate as the quantum system drops into the ground state at low temperature... Fig. 11.1. The Helmholtz free energy as a function of /3 for the three free energy models of the harmonic oscillator. Here we have set h = uj = 1. The exact result is the solid line, the Feynman-Hibbs free energy is the upper dashed line, and the classical free energy is the lower dashed line. The classical and Feynman-Hibbs potentials bound the exact free energy, and the Feynman-Hibbs free energy becomes inaccurate as the quantum system drops into the ground state at low temperature...

See other pages where Classical harmonic oscillator is mentioned: [Pg.1017]    [Pg.240]    [Pg.7]    [Pg.201]    [Pg.92]    [Pg.79]    [Pg.353]    [Pg.184]    [Pg.35]    [Pg.109]    [Pg.118]    [Pg.169]    [Pg.281]    [Pg.75]    [Pg.204]    [Pg.212]    [Pg.260]    [Pg.319]    [Pg.680]    [Pg.314]    [Pg.391]    [Pg.397]    [Pg.402]    [Pg.403]    [Pg.404]    [Pg.120]    [Pg.295]    [Pg.296]    [Pg.344]    [Pg.154]   
See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.332 , Pg.333 ]

See also in sourсe #XX -- [ Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 ]

See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Harmonic oscillation

Harmonic oscillator

© 2024 chempedia.info