Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solute molecular Hamiltonian

The MFA [1] introduces the perturbation due to the solvent effect in an averaged way. Specifically, the quantity that is introduced into the solute molecular Hamiltonian is the averaged value of the potential generated by the solvent in the volume occupied by the solute. In the past, this approximation has mainly been used with very simplified descriptions of the solvent, such as those provided by the dielectric continuum [2] or Langevin dipole models [3], A more detailed description of the solvent has been used by Ten-no et al. [4], who describe the solvent through atom-atom radial distribution functions obtained via an extended version of the interaction site method. Less attention has been paid, however, to the use of the MFA in conjunction with simulation calculations of liquids, although its theoretical bases are well known [5]. In this respect, we would refer to the papers of Sese and co-workers [6], where the solvent radial distribution functions obtained from MD [7] calculations and its perturbation are introduced a posteriori into the molecular Hamiltonian. [Pg.580]

Hqm being the in vacuo solute molecular Hamiltonian and where the solute-solvent electrostatic interaction energy reads... [Pg.138]

The first two terms are the molecular Hamiltonian and the radiation field Hamiltonian. The molecular Schrodinger equation for the first term in (5.2) is assumed solved, with known eigenvalues and eigenfunctions. Solutions for the second term in (3.4) in vacuo are taken in second-quantized form. Hint can be taken in minimal-coupling form (5.3) allowing for the variation of the radiation field over the extent of the molecule,... [Pg.21]

Finally, we consider the complete molecular Hamiltonian which contains not only temis depending on the electron spin, but also temis depending on the nuclear spin / (see chapter 7 of [1]). This Hamiltonian conmiutes with the components of Pgiven in (equation Al.4,1). The diagonalization of the matrix representation of the complete molecular Hamiltonian proceeds as described in section Al.4,1.1. The theory of rotational synnnetry is an extensive subject and we have only scratched the surface here. A relatively new book, which is concemed with molecules, is by Zare [6] (see [7] for the solutions to all the problems in [6] and a list of the errors). This book describes, for example, the method for obtaining the fimctioiis ... [Pg.170]

In this paper, we discuss semi-implicit/implicit integration methods for highly oscillatory Hamiltonian systems. Such systems arise, for example, in molecular dynamics [1] and in the finite dimensional truncation of Hamiltonian partial differential equations. Classical discretization methods, such as the Verlet method [19], require step-sizes k smaller than the period e of the fast oscillations. Then these methods find pointwise accurate approximate solutions. But the time-step restriction implies an enormous computational burden. Furthermore, in many cases the high-frequency responses are of little or no interest. Consequently, various researchers have considered the use of scini-implicit/implicit methods, e.g. [6, 11, 9, 16, 18, 12, 13, 8, 17, 3]. [Pg.281]

Molecular quan turn mcchan ics finds the solution to a Sch rddinger equation for an electronic Hamiltonian, H i, that gives a total energy, K(,. (.(R) + (R.R). Repeated solutions at different nuclear configurations, R, lead to some approximate potential energy sur-... [Pg.164]

Solutions to a Schrodinger equation for this last Hamiltonian (7) describe the vibrational, rotational, and translational states of a molecular system. This release of HyperChem does not specifically explore solutions to the nuclear Schrodinger equation, although future releases may. Instead, as is often the case, a classical approximation is made replacing the Hamiltonian by the classical energy ... [Pg.164]

A variety of methodologies have been implemented for the reaction field. The basic equation for the dielectric continuum model is the Poisson-Laplace equation, by which the electrostatic field in a cavity with an arbitrary shape and size is calculated, although some methods do not satisfy the equation. Because the solute s electronic strucmre and the reaction field depend on each other, a nonlinear equation (modified Schrddinger equation) has to be solved in an iterative manner. In practice this is achieved by modifying the electronic Hamiltonian or Fock operator, which is defined through the shape and size of the cavity and the description of the solute s electronic distribution. If one takes a dipole moment approximation for the solute s electronic distribution and a spherical cavity (Onsager s reaction field), the interaction can be derived rather easily and an analytical expression of theFock operator is obtained. However, such an expression is not feasible for an arbitrary electronic distribution in an arbitrary cavity fitted to the molecular shape. In this case the Fock operator is very complicated and has to be prepared by a numerical procedure. [Pg.418]

The individual terms in (5.2) and (5.3) represent the nuclear-nuclear repulsion, the electronic kinetic energy, the electron-nuclear attraction, and the electron-electron repulsion, respectively. Thus, the BO Hamiltonian is of treacherous simplicity it merely contains the pairwise electrostatic interactions between the charged particles together with the kinetic energy of the electrons. Yet, the BO Hamiltonian provides a highly accurate description of molecules. Unless very heavy elements are involved, the exact solutions of the BO Hamiltonian allows for the prediction of molecular phenomena with spectroscopic accuracy that is... [Pg.139]

In Eq. (2.30), F is the Fock operator and Hcore is the Hamiltonian describing the motion of an electron in the field of the spatially fixed atomic nuclei. The operators and K. are operators that introduce the effects of electrons in the other occupied MOs. Hence, when i = j, J( (= K.) is the potential from the other electron that occupies the same MO, i ff IC is termed the exchange potential and does not have a simple functional form as it describes the effect of wavefunction asymmetry on the correlation of electrons with identical spin. Although simple in form, Eq. (2.29) (which is obtained after relatively complex mathematical analysis) represents a system of differential equations that are impractical to solve for systems of any interest to biochemists. Furthermore, the orbital solutions do not allow a simple association of molecular properties with individual atoms, which is the model most useful to experimental chemists and biochemists. A series of soluble linear equations, however, can be derived by assuming that the MOs can be expressed as a linear combination of atomic orbitals (LCAO)44 ... [Pg.17]

From the EPR spectroscopist s viewpoint the spin-trap experiment is next to trivial the molecular mass of the radical adduct is small enough to guarantee the molecule to tumble sufficiently rapidly at ambient temperatures in aqueous solution to ensure complete averaging away of any anisotropy in the spin Hamiltonian ... [Pg.170]

Use of high-level ab initio molecular orbital methods or density functional Hamiltonians to simulate the QM region through approximate solutions of the electronic Schrodinger equation. [Pg.171]

The solute-solvent system, from the physical point of view, is nothing but a system that can be decomposed in a determined collection of electrons and nuclei. In the many-body representation, in principle, solving the global time-dependent Schrodinger equation with appropriate boundary conditions would yield a complete description for all measurable properties [47], This equation requires a definition of the total Hamiltonian in coordinate representation H(r,X), where r is the position vector operator for all electrons in the sample, and X is the position vector operator of the nuclei. In molecular quantum mechanics, as it is used in this section, H(r,X) is the Coulomb Hamiltonian[46]. The global wave function A(r,X,t) is obtained as a solution of the equation ... [Pg.286]

The system is prepared at t=0 in the quantum state Pik> and the question is how to calculate the probability that at a later time t the system is in the state Fjn>. By construction, these quantum states are solutions of molecular Hamiltonian in absence of the radiation field, Hc->Ho Ho ik> = e k Fik> and H0 Pjn> = Sjn xPJn>. The states are orthogonal. The perturbation driving the jumps between these two states is taken to be H2(p,A)= D exp(icot), where co is the frequency of the incoherent radiation field and D will be a time independent operator. From standard quantum mechanics, the time dependent quantum state is given by ... [Pg.318]

In the quantum mechanical continuum model, the solute is embedded in a cavity while the solvent, treated as a continuous medium having the same dielectric constant as the bulk liquid, is incorporated in the solute Hamiltonian as a perturbation. In this reaction field approach, which has its origin in Onsager s work, the bulk medium is polarized by the solute molecules and subsequently back-polarizes the solute, etc. The continuum approach has been criticized for its neglect of the molecular structure of the solvent. Also, the higher-order moments of the charge distribution, which in general are not included in the calculations, may have important effects on the results. Another important limitation of the early implementations of this method was the lack of a realistic representation of the cavity form and size in relation to the shape of the solute. [Pg.334]

Recent solid state NMR studies of liquid crystalline materials are surveyed. The review deals first with some background information in order to facilitate discussions on various NMR (13C, ll, 21 , I9F etc.) works to be followed. This includes the following spin Hamiltonians, spin relaxation theory, and a survey of recent solid state NMR methods (mainly 13C) for liquid crystals on the one hand, while on the other hand molecular ordering of mesogens and motional models for liquid crystals. NMR studies done since 1997 on both solutes and solvent molecules are discussed. For the latter, thermotropic and lyotropic liquid crystals are included with an emphasis on newly discovered liquid crystalline materials. For the solute studies, both small molecules and weakly ordered biomolecules are briefly surveyed. [Pg.68]

The transition from (1) and (2) to (5) is reversible each implies the other if the variations 5l> admitted are completely arbitrary. More important from the point of view of approximation methods, Eq. (1) and (2) remain valid when the variations 6 in a trial function are constrained in some systematic way whereas the solution of (5) subject to model or numerical approximations is technically much more difficult to handle. By model approximation we shall mean an approximation to the form of as opposed to numerical approximations which are made at a lower level once a model approximation has been made. That is, we assume that H, the molecular Hamiltonian is fixed (non-relativistic, Born-Oppenheimer approximation which itself is a model in a wider sense) and we make models of the large scale electronic structure by choice of the form of and then compute the detailed charge distributions, energetics etc. within that model. [Pg.39]


See other pages where Solute molecular Hamiltonian is mentioned: [Pg.139]    [Pg.147]    [Pg.198]    [Pg.606]    [Pg.3023]    [Pg.110]    [Pg.313]    [Pg.268]    [Pg.408]    [Pg.7]    [Pg.65]    [Pg.306]    [Pg.301]    [Pg.55]    [Pg.688]    [Pg.13]    [Pg.26]    [Pg.117]    [Pg.476]    [Pg.110]    [Pg.115]    [Pg.130]    [Pg.214]    [Pg.161]    [Pg.252]    [Pg.258]    [Pg.261]    [Pg.49]    [Pg.398]    [Pg.167]    [Pg.167]    [Pg.285]    [Pg.70]   
See also in sourсe #XX -- [ Pg.138 , Pg.139 , Pg.147 ]




SEARCH



Hamiltonian molecular

Molecular Hamiltonians

Molecular solution

© 2024 chempedia.info