Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halogen fluorides, reactions

Fluorine forms very reactive halogen fluorides. Reaction of CI2 and F2 at elevated temperatures can produce GIF, CIF, or CIF 3 be obtained from the reaction of Br2 and F2. These halogen fluorides react with all nonmetals, except for the noble gases, N2, and O2 (5). Fluorine also forms a class of compounds known as hypofluorites, eg, CF OF (6). Fluorine peroxide [7783-44-0], O2F2, has also been reported (6). [Pg.137]

The halogen fluorides are binary compounds of bromine, chlorine, and iodine with fluorine. Of the eight known compounds, only bromine trifluoride, chlorine trifluoride, and iodine pentafluoride have been of commercial importance. Properties and appHcations have been reviewed (1 7) as have the reactions with organic compounds (8). Reviews covering the methods of preparation, properties, and analytical chemistry of the halogen fluorides are also available (9). [Pg.184]

The halogen fluorides are best prepared by the reaction of fluorine with the corresponding halogen. These compounds are powerful oxidising agents chlorine trifluoride approaches the reactivity of fluorine. In descending order of reactivity the halogen fluorides are chlorine pentafluoride [13637-63-3] 1 5 chlorine trifluoride [7790-91-2] 3 bromine pentafluoride [7789-30-2], BrF iodine heptafluoride [16921 -96-3], chlorine... [Pg.184]

Reactions With Metals. AH metals react to some extent with the halogen fluorides, although several react only superficiaHy to form an adherent fluoride film of low permeabHity that serves as protection against further reaction. This protective capacity is lost at elevated temperatures, however. Hence, each metal has a temperature above which it continues to react. Mild steel reacts rapidly above 250°C. Copper and nickel lose the abHity to resist reaction above 400 and 750°C, respectively. [Pg.185]

The rapid reaction of CIF and BrF with metals is the basis of the commercial use in cutting pipe in deep oil weUs (64—68). In this appHcation, the pipe is cut by the high temperature reaction of the halogen fluoride and the metal. [Pg.185]

Halogen fluorides react with sulfur, selenium, teUurium, phosphoms, sHicon, and boron at room temperature to form the corresponding fluorides. Slight warming may be needed to initiate the reactions (4) which, once started, proceed rapidly to completion accompanied by heat and light. The lack of protective film formation aHows complete reaction. [Pg.185]

Liquid Halogen Fluorides as Reaction Media. Bromine trifluoride and iodine pentafluoride are highly dimerized and behave as ionizing... [Pg.186]

Krypton difluoride cannot be synthesized by the standard high pressure-high temperature means used to prepare xenon fluorides because of the low thermal stabitity of KrF. There are three low temperature methods which have proven practical for the preparation of gram and greater amounts of KrF (141—143). Radon fluoride is most conveniently prepared by reaction of radon gas with a tiquid halogen fluoride (CIE, CIE, CIE, BrE, or lE ) at room temperature (144,145). [Pg.25]

Additions of halogen fluorides to the more electrophilic perfluonnated olefins generally require different conditions Reactions of iodine fluoride, generated in situ from iodine and iodine pentafluoride [62 102 103, /05] or iodine, hydrogen fluoride, and parapeiiodic aud [104], with fluormated olefins (equations 8-10) are especially well studied because the perfluoroalkyl iodide products are useful precursors of surfactants and other fluorochemicals Somewhat higher temperatures are required compared with reactions with hydrocarbon olefins Additions of bromine fluoride, from bromine and bromine trifluonde, to perfluonnated olefins are also known [lOti]... [Pg.65]

More general procedures for additions of halogen fluorides to highly fluori-nated olefins involve reactions with a source of nucleophilic fluoride ion, such as an alkali metal fluoride, in the presence of aposttive halogen donor [62 107, lOff, 109, 110, 111] (equations 11 and 12) These processes are likely to occur by the generation and capture of perfluorocarbamonic intermediates Tertiary fluormated carbanions can be isolated as cesium [112], silver [113], or tns(dimethylamino)sul-... [Pg.65]

Carbon-nitrogen multiple bonds in fluorinated imines and nitriles react with halogen fluoride reagents Imines provide 7V-chloroamine.s on reaction with chlo rme fluoride [62, 121, 122, 123] (equations 23 and 24) or with cesium fluoride and chlorine [124] and A -bromoammes on reaction with cesium fluoride and bromine (equation 24)... [Pg.68]

With nitriles, products from addition of one or two equivalents of halogen fluoride can be obtained [725, 726, 127, 128] (equations 25 and 26) on reaction with chlorine fluoride or bromine and an alkali metal fluoride. [Pg.68]

Polymer-supported tetraphenylphosphonium bromide is a recyclable catalyst for halogen-exchange reactions. The reaction of 1 equivalent of chloro-2,4-dinitrobenzene with 1 5 equivalents of spray-dned potassium fluoride and 0.1 equivalent of this catalyst in acetonitnle at 80 C for 12 h gives 2,4-dinitro-fluorobenzene m 98% yield An 11% yield is obtained without the catalyst [3 /]. [Pg.181]

The preparation of e/n-difluoro compounds by the oxidative fluorodesul-furization ot 1,3-dithiolanes readily proceeds by treatment with a pyridinium polyhydrogen fluoride-Af-halo compound reagent the latter serves as a bromonium ion source [2], l,3-Dibromo-5,5-dimethylhydantoin is the most effective of several At-halo oxidants. It is believed that /V-halo compounds combine with hydrogen fluoride to generate in situ halogen fluorides, the oxidants. Formation of gem-difluorides from dithiolanes derived from ketones is efficient and rapid, even at -78 °C, whereas the reaction of dithiolanes derived from aldehydes requires higher temperature (0 °C) (equation 4). [Pg.264]

It should be emphasized that the reactivity of IF3 is mild only in comparison with the other halogen fluorides (p. 830). Reaction with water is extremely vigorous but the iodine is not reduced and oxygen is not evolved ... [Pg.835]

Because of the size of the iodine atom and the fact that it is easier to oxidize to the +7 state, IF7 is the only XX 7 interhalogen. It is prepared by the reaction of IF5 and F2 at elevated temperatures, and like other halogen fluorides it is a strong fluorinating agent. When it reacts with water, HF and HI04 are produced. [Pg.552]

The stability of dialkylimidazolium cation-containing ionic liquids can be a problem even at moderate temperatures in the presence of some reagents or catalysts. For example, when CsF and KF were used in the ionic liquid [BMIM]PFg to perform a halogen exchange reaction in an attempt to replace Br from bromo-carbons with F , it was found that alkyl elimination from the [BMIM] cation took place, forming methyl imidazole, 1-butene, 1-fluorobutane, and other unidentified products at 150°C overnight 69). The fluoride ion acted as a base that promotes elimination or substitution processes. [Pg.171]

Fluorofullerenes have been prepared by reaction with halogen fluorides, by direct fluorination with F2 or by fluorination with noble gas fluorides [7,8,14], The reaction with high valence metal fluorides is the most versatile route for the synthesis of CsoFnH. [Pg.269]

Addition of Fluoride and a Different Halogen (Halofluorination Reactions)... [Pg.122]


See other pages where Halogen fluorides, reactions is mentioned: [Pg.127]    [Pg.184]    [Pg.185]    [Pg.185]    [Pg.185]    [Pg.186]    [Pg.187]    [Pg.210]    [Pg.55]    [Pg.61]    [Pg.67]    [Pg.913]    [Pg.164]    [Pg.72]    [Pg.650]    [Pg.248]    [Pg.282]    [Pg.476]    [Pg.570]    [Pg.632]    [Pg.652]    [Pg.1012]    [Pg.127]    [Pg.3]    [Pg.6]    [Pg.69]    [Pg.362]    [Pg.114]    [Pg.122]   
See also in sourсe #XX -- [ Pg.562 , Pg.655 , Pg.656 , Pg.657 ]




SEARCH



Halogen fluorides

Halogen fluorides, reactions with

Halogen fluorides, reactions with radon

Halogenation reactions

Potassium fluoride halogen exchange reaction with

Reactions halogens

© 2024 chempedia.info