Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides distribution

Mason MF (1936) Halide distribution in body fluids in chronic bromide intoxication. J Biol Chem 113 61-73. [Pg.1454]

The induction energy is inlierently non-additive. In fact, the non-additivity is displayed elegantly in a distributed polarizability approach [28]. Non-additive induction energies have been found to stabilize what appear to be highly improbable crystal structures of the alkalme earth halides [57]. [Pg.194]

The unequal distribution of charge produced when elements of different electronegativities combine causes a polarity of the covalent bond joining them and, unless this polarity is balanced by an equal and opposite polarity, the molecule will be a dipole and have a dipole moment (for example, a hydrogen halide). Carbon tetrachloride is one of a relatively few examples in which a strong polarity does not result in a molecular dipole. It has a tetrahedral configuration... [Pg.51]

The bimetallic mechanism is illustrated in Fig. 7.13b the bimetallic active center is the distinguishing feature of this mechanism. The precise distribution of halides and alkyls is not spelled out because of the exchanges described by reaction (7.Q). An alkyl bridge is assumed based on observations of other organometallic compounds. The pi coordination of the olefin with the titanium is followed by insertion of the monomer into the bridge to propagate the reaction. [Pg.493]

Organic Halides. Alkyl halides and aiyl halides, activated by election withdrawing groups (such as NO2) in the ortho or para positions, react with alkyleneamines to form mono- or disubstituted derivatives. Product distribution is controlled by reactant ratio, metal complexation or choice of solvent (16,17). Mixing methylene chloride [75-09-2J and EDA reportedly causes a mnaway reaction (18). [Pg.42]

Polystyrene produced by free-radical polymerisation techniques is part syndio-tactic and part atactic in structure and therefore amorphous. In 1955 Natta and his co-workers reported the preparation of substantially isotactic polystyrene using aluminium alkyl-titanium halide catalyst complexes. Similar systems were also patented by Ziegler at about the same time. The use of n-butyl-lithium as a catalyst has been described. Whereas at room temperature atactic polymers are produced, polymerisation at -30°C leads to isotactic polymer, with a narrow molecular weight distribution. [Pg.454]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

Olivier and Berger335, who measured the first-order rate coefficients for the aluminium chloride-catalysed reaction of 4-nitroben2yl chloride with excess aromatic (solvent) at 30 °C and obtained the rate coefficients (lO5/ ) PhCI, 1.40 PhH, 7.50 PhMe, 17.5. These results demonstrated the electrophilic nature of the reaction and also the unselective nature of the electrophile which has been confirmed many times since. That the electrophile in these reactions is not the simple and intuitively expected free carbonium ion was indicated by the observation by Calloway that the reactivity of alkyl halides was in the order RF > RC1 > RBr > RI, which is the reverse of that for acylation by acyl halides336. The low selectivity (and high steric hindrance) of the reaction was further demonstrated by Condon337 who measured the relative rates at 40 °C, by the competition method, of isopropylation of toluene and isopropylbenzene with propene catalyzed by boron trifluoride etherate (or aluminium chloride) these were as follows PhMe, 2.09 (1.10) PhEt, 1.73 (1.81) Ph-iPr, (1.69) Ph-tBu, 1.23 (1.40). The isomer distribution in the reactions337,338 yielded partial rate factors of 2.37 /mMe, 1.80 /pMe, 4.72 /, 0.35 / , 2.2 / Pr, 2.55337 339. [Pg.140]

The same 1 1 product ratio was found with iodobenzene-l-14C. This result clearly indicates that the same intermediate intervenes with both halides. The most likely candidate is benzyne, as shown, which would easily accommodate the distribution of the label. Also, the intermediate is not likely to contain Cl or I, because its selectivity ratio in the second step would then not be the same. [Pg.110]

Recently, use of LiCl/DMAc and LiCl/l,3-dimethyl-2-imidazolidinone as solvent systems for acetylation of cellulose by acetic anhydride/pyridine has been compared. A DS of 1.4 was obtained the substituent distribution in the products synthesized in both solvents was found to be the same, with reactivity order Ce > C2 > C3. Therefore, the latter solvent system does not appear to be better than the much less expensive LiCl/DMAc, at least for this reaction. It appears, however, to be especially efficient for etherification reactions [178]. It is possible, however, that the effect of cellulose aggregation is more important for its reaction with the (less reactive) halides than with acid anhydrides this being the reason for the better performance of the latter solvent system in ether formation, since it is more efficient in cellulose dissolution. [Pg.130]

InSCl, InSBr, InSeCl, and InSeBr are isotypic, and crystallize in the hexagonal CdCU lattice type. The halide and chalcogenide ions are statistically distributed among the Cl sites. As in CdClj, the bonding within the InYs Xa/a octahedra should be predominantly ionic 162). [Pg.387]

The Sn Mossbauer data for Sn7S2Brio, Sn4SeBr, and Sn4TeBr, have been measured, and compared with those of the parent halides and chalcogenides. The data are consistent with a random distribution of halide and chalcogenide anions (104). Thus far, the reflection spectra of a few tin(IV) compounds assumed to be semiconductors have... [Pg.395]

It was suggested that this change in product distribution was due to the existence of an equilibrium between two types of complex, viz., a cr-butenyl-pentacyanocobaltate(III) and a 7r-butenyltetracyanocobaltate(III) 107, 109). However, further study of the kinetics and product distribution suggested the presence of two o-bonded complexes, viz., cr-but-l-en-3-yl and a-but-2-en-l-yl 24a). Direct evidence for the existence of a cyanide-dependent equilibrium between the a- and rr-bonded organocyanide complexes has been obtained from NMR studies of the complex prepared by the reaction of allyl halides with Co—H 109) (see also Section V,C). Both butadiene and crotyl chloride react with Co—H to give the same... [Pg.435]

Unlike the di-f dihalides, such compounds differ little in energy from both the equivalent quantity of metal and trihalide, and from other combinations with a similar distribution of metal-metal and metal-halide bonding. So the reduced halide chemistry of the five elements shows considerable variety, and thermodynamics is ill-equipped to account for it. All four elements form di-iodides with strong metal-metal interaction, Prl2 occurring in five different crystalline forms. Lanthanum yields Lai, and for La, Ce and Pr there are hahdes M2X5 where X=Br or I. The rich variety of the chemistry of these tri-f compounds is greatly increased by the incorporahon of other elements that occupy interstitial positions in the lanthanide metal clusters [3 b, 21, 22]. [Pg.8]

The reaction between Fe(IlI) and Sn(Il) in dilute perchloric acid in the presence of chloride ions is first-order in Fe(lll) concentration . The order is maintained when bromide or iodide is present. The kinetic data seem to point to a fourth-order dependence on chloride ion. A minimum of three Cl ions in the activated complex seems necessary for the reaction to proceed at a measurable rate. Bromide and iodide show third-order dependences. The reaction is retarded by Sn(II) (first-order dependence) due to removal of halide ions from solution by complex formation. Estimates are given for the formation constants of the monochloro and monobromo Sn(II) complexes. In terms of catalytic power 1 > Br > Cl and this is also the order of decreasing ease of oxidation of the halide ion by Fe(IlI). However, the state of complexing of Sn(ll)and Fe(III)is given by Cl > Br > I". Apparently, electrostatic effects are not effective in deciding the rate. For the case of chloride ions, the chief activated complex is likely to have the composition (FeSnC ). The kinetic data cannot resolve the way in which the Cl ions are distributed between Fe(IlI) and Sn(ll). [Pg.184]


See other pages where Halides distribution is mentioned: [Pg.379]    [Pg.904]    [Pg.379]    [Pg.904]    [Pg.75]    [Pg.2749]    [Pg.610]    [Pg.99]    [Pg.149]    [Pg.460]    [Pg.919]    [Pg.149]    [Pg.340]    [Pg.802]    [Pg.1269]    [Pg.69]    [Pg.73]    [Pg.131]    [Pg.330]    [Pg.236]    [Pg.85]    [Pg.109]    [Pg.105]    [Pg.341]    [Pg.68]    [Pg.74]    [Pg.239]    [Pg.269]    [Pg.1509]    [Pg.16]    [Pg.567]    [Pg.170]    [Pg.172]   
See also in sourсe #XX -- [ Pg.4 , Pg.16 ]




SEARCH



© 2024 chempedia.info