Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gold shape

This paper deals with the control of weld depth penetration for cylinders in gold-nickel alloy and tantalum. After introducing the experimental set-up and the samples description, the study and the optimization of the testing are presented for single-sided measurements either in a pulse-echo configuration or when the pump and the probe laser beams are shifted (influence of a thermal phenomenon), and for different kind of laser impact (a line or a circular spot). First, the ultrasonic system is used to detect and to size a flat bottom hole in an aluminium plate. Indeed, when the width of the hole is reduced, its shape is nearly similar to the one of a slot. Then, the optimization is accomplished for... [Pg.693]

Then, the weld depths penetration are controlled in a pulse-echo configuration because the weld bead (of width 2 mm) disturbs the detection when the pump and the probe beams are shifted of 2.2 mm. The results are presented in figure 8 (identical experimental parameters as in figure 7). The slow propagation velocities for gold-nickel alloy involve that the thermal component does not overlap the ultrasonic components, in particular for the echo due to the interaction with a lack of weld penetration. The acoustic response (V shape) is still well observed both for the slot of height 1.7 mm and for a weld depth penetration of 0.8 mm (lack of weld penetration of 1.7 mm), even with the weld bead. This is hopeful with regard to the difficulties encountered by conventional ultrasound in the case of the weld depths penetration. [Pg.698]

Sundquist [35], studying small crystals of metals, noted a great tendency for rather rounded shapes and concluded that for such metals as silver, gold, copper, and iron there was not more than about 15% variation in surface tension between different crystal... [Pg.280]

STM and AFM profiles distort the shape of a particle because the side of the tip rides up on the particle. This effect can be corrected for. Consider, say, a spherical gold particle on a smooth surface. The sphere may be truncated, that is, the center may be a distance q above the surface, where q < r, the radius of the sphere. Assume the tip to be a cone of cone angle a. The observed profile in the vertical plane containing the center of the sphere will be a rounded hump of base width 2d and height h. Calculate q and r for the case where a - 32° and d and h are 275 nm and 300 nm, respectively. Note Chapter XVI, Ref. 133a. Can you show how to obtain the relevent equation ... [Pg.742]

Figure C2.17.2. Transmission electron micrograph of a gold nanoneedle. Inverse micelle environments allow for a great deal of control not only over particle size, but also particle shape. In this example, gold nanocrystals were prepared using a photolytic method in surfactant-rich solutions the surfactant interacts strongly with areas of low curvature, thus continued growth can occur only at the sharjD tips of nanocrystals, leading to the fonnation of high-aspect-ratio nanostmctures [52]. Figure C2.17.2. Transmission electron micrograph of a gold nanoneedle. Inverse micelle environments allow for a great deal of control not only over particle size, but also particle shape. In this example, gold nanocrystals were prepared using a photolytic method in surfactant-rich solutions the surfactant interacts strongly with areas of low curvature, thus continued growth can occur only at the sharjD tips of nanocrystals, leading to the fonnation of high-aspect-ratio nanostmctures [52].
Figure C2.17.5. Transmission electron micrograph of a field of anisotropic gold nanocrystals. In tliis example, a lower magnification image of gold nanocrystals reveals tlieir anisotropic shapes and faceted surfaces [36],... Figure C2.17.5. Transmission electron micrograph of a field of anisotropic gold nanocrystals. In tliis example, a lower magnification image of gold nanocrystals reveals tlieir anisotropic shapes and faceted surfaces [36],...
Wei G T, Liu F K and Wang C R C 1999 Shape separation of nanometre gold particles by size-exclusion chromatography Anal. Chem. in press... [Pg.2919]

Dry chlorine reacts with most metals combustively depending on temperature alurninum, arsenic, gold, mercury, selenium, teUerium, and tin react with dry CI2 in gaseous or Hquid form at ordinary temperatures carbon steel ignites at about 250°C depending on the physical shape and titanium reacts violendy with dry chlorine. Wet chlorine is very reactive because of the hydrochloric acid and hypochlorous acid (see eq. 37). Metals stable to wet chlorine include platinum, silver, tantalum, and titanium. Tantalum is the most stable to both dry and wet chlorine. [Pg.509]

Sheet nd Sha.pe Waxes. Sheet and shape waxes are used to produce patterns from which complete or partial dentures are cast of gold or base metal alloys. They are used to fabricate the restoration prototype directly upon a refractory investment cast. [Pg.480]

Noble Metal Weldments. Noble metal contact buttons, TS—l h p.m thick, are made by resistance welding a rod of the material to the substrate, which usually is a contact spring, and by cutting the rod and forming the button to the desired shape. Pure gold and gold—silver alloys are the most commonly used metals. [Pg.31]


See other pages where Gold shape is mentioned: [Pg.699]    [Pg.2669]    [Pg.683]    [Pg.201]    [Pg.421]    [Pg.48]    [Pg.157]    [Pg.178]    [Pg.179]    [Pg.410]    [Pg.51]    [Pg.55]    [Pg.95]    [Pg.403]    [Pg.162]    [Pg.395]    [Pg.420]    [Pg.420]    [Pg.147]    [Pg.350]    [Pg.363]    [Pg.195]    [Pg.131]    [Pg.92]    [Pg.1197]    [Pg.306]    [Pg.384]    [Pg.452]    [Pg.28]    [Pg.459]    [Pg.75]    [Pg.50]    [Pg.225]    [Pg.226]    [Pg.20]    [Pg.583]    [Pg.72]    [Pg.150]    [Pg.327]    [Pg.359]    [Pg.361]   


SEARCH



© 2024 chempedia.info