Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gold polymer interfaces

In the many reports on photoelectron spectroscopy, studies on the interface formation between PPVs and metals, focus mainly on the two most commonly used top electrode metals in polymer light emitting device structures, namely aluminum [55-62] and calcium [62-67]. Other metals studied include chromium [55, 68], gold [69], nickel [69], sodium [70, 71], and rubidium [72], For the cases of nickel, gold, and chromium deposited on top of the polymer surfaces, interactions with the polymers are reported [55, 68]. In the case of the interface between PPV on top of metallic chromium, however, no interaction with the polymer was detected [55]. The results concerning the interaction between chromium and PPV indicates two different effects, namely the polymer-on-metal versus the metal-on-polymer interface formation. Next, the PPV interface formation with aluminum and calcium will be discussed in more detail. [Pg.78]

It is perhaps obvious that the nature of the interface between a molecular solid (polymer) and a (clean) metal surface is not necessarily equivalent to the interface formed when a metal is vapor-deposited (essentially atom-by-atom ) on to the (clean) surface of the polymer or molecular solid. Atoms of all metals are active in the form of individual atoms , even gold atoms. In the context of the new polymer LEDs, some of the works discussed in chapter 7 involve the study of the early stages of formation of the interface in the latter configuration (metal-on-polymer interfaces). Very little has been reported on conjugated polymer-on-metal interfaces, however, primarily because of the difficulties in preparing monolayers of polymer materials on well defined metal substrates appropriate for study (via PES or any other surface sensitive spectroscopy). The issues discussed below are based upon information accumulated over two decades of involvement with the surfaces of condensed molecular solids and conjugated polymers in ultra-thin form, represented by the examples in the previous chapter. [Pg.140]

Jia, H., Wildes, A., Titmuss, S. (2011). Structure of pH-responsive polymer brushes grown at the gold-water interface dependence on grafting density and temperature. Macromolecules, 45, 305-312. [Pg.61]

However, Weaver considered that tfie inclusion of gold in the above list made any such analogous explanation unlikely for the metal/polymer interfaces. [Pg.76]

Particularly attractive for numerous bioanalytical applications are colloidal metal (e.g., gold) and semiconductor quantum dot nanoparticles. The conductivity and catalytic properties of such systems have been employed for developing electrochemical gas sensors, electrochemical sensors based on molecular- or polymer-functionalized nanoparticle sensing interfaces, and for the construction of different biosensors including enzyme-based electrodes, immunosensors, and DNA sensors. Advances in the application of molecular and biomolecular functionalized metal, semiconductor, and magnetic particles for electroanalytical and bio-electroanalytical applications have been reviewed by Katz et al. [142]. [Pg.340]

Redox enzymes have been assembled in a monolayer on the solid surface by a potential-assisted self-assembling method as well as a thiol-gold selfassembling method. These enzymes are electronically communicated with the solid substrate through a molecular interface of conducting polymer and a covalently bound mediator. Electron transfer type of enzyme sensors have been fabricated by the self-assembling methods. [Pg.334]

Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer... Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer...
When selective layers are deposited, the whole structure must be treated as a multiple resonator in which the reflection and/or refraction of the acoustic energy occurs at each interface. For example, when a polymer film is deposited on top of the gold electrode of the QCM, it is the polymer-Au interface with which we are concerned. When the mass loading of multiple structures becomes too high, the effect of the impedance mismatches becomes significant and the crystal ceases to oscillate. Even approximate treatment of the multiple resonator is difficult because densities, as well as thicknesses and shear moduli, of the individual layers must be known. [Pg.74]

Consider the polymer-on-metal interface, which might be prepared by coating a thin metal film with polymer in a polymer-based LED. The case of the counter electrode, formed by vapor-deposition, is discussed subsequently. First, assume that the substrates have clean surfaces hydrocarbon and oxide free, or naturally oxidized but still hydrocarbon free (pointed out as necessary). Typically, in connection with polymer-based LEDs, the metallic substrate could be gold, ITO (indium tin oxide) coated glass, the clean natural oxide of aluminum ( 20 A in thickness), the natural oxide which forms upon freshly etched Si( 110) wafers ( 10 A), or possibly even a polyaniline film. Dirt , which may be either a problem or an advantage, will not be taken up here. Discussions will alternate between coated polymer films and condensed model molecular solid films, as necessary to illustrate points. [Pg.143]


See other pages where Gold polymer interfaces is mentioned: [Pg.147]    [Pg.305]    [Pg.373]    [Pg.294]    [Pg.595]    [Pg.294]    [Pg.602]    [Pg.295]    [Pg.35]    [Pg.32]    [Pg.75]    [Pg.491]    [Pg.309]    [Pg.670]    [Pg.2629]    [Pg.371]    [Pg.374]    [Pg.46]    [Pg.60]    [Pg.193]    [Pg.240]    [Pg.338]    [Pg.618]    [Pg.412]    [Pg.58]    [Pg.61]    [Pg.219]    [Pg.562]    [Pg.232]    [Pg.18]    [Pg.87]    [Pg.415]    [Pg.31]    [Pg.43]    [Pg.151]    [Pg.74]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Interfaces, polymer

© 2024 chempedia.info