Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Germanium analysis

GLC (2278), structure (2082) Germanium analysis by Schoeninger combustion and polarographic determination (2710). [Pg.134]

Analysis of refined germanium products is done in a wide variety of ways, including several methods that have become ASTM standards (47). Electronic-grade Ge02 is analyzed using an emission spectrograph to determine its spectrographic purity. Its volatile content is measured in accord with ASTM F5 and its bulk density with F6. Other ASTM standards cover the preparation of a metal biHet from a sample of the oxide (F27), and the determination of the conductivity type (F42) and resistivity (F43) of the biHet. [Pg.280]

Germanium metal is also used in specially prepared Ge single crystals for y-ray detectors (54). Both the older hthium-drifted detectors and the newer intrinsic detectors, which do not have to be stored in hquid nitrogen, do an exceUent job of spectral analysis of y-radiation and are important analytical tools. Even more sensitive Ge detectors have been made using isotopicahy enriched Ge crystals. Most of these have been made from enriched Ge and have been used in neutrino studies (55—57). [Pg.281]

Analysis of zinc solutions at the purification stage before electrolysis is critical and several metals present in low concentrations are monitored carefully. Methods vary from plant to plant but are highly specific and usually capable of detecting 0.1 ppm or less. Colorimetric process-control methods are used for cobalt, antimony, and germanium, turbidimetric methods for cadmium and copper. Alternatively, cadmium, cobalt, and copper are determined polarographicaHy, arsenic and antimony by a modified Gutzeit test, and nickel with a dimethylglyoxime spot test. [Pg.410]

Germanium was predicted as the missing element of a triad between silicon and tin by J. A. R. Newlands in 1864, and in 1871 D. I. Mendeleev specified the properties that ekasilicon would have (p. 29). The new element was discovered by C. A. Winkler in 1886 during the analysis of a new and rare mineral argyrodite, AggGeSfi " he named it in honour of his country, Germany. By contrast, tin and lead are two of the oldest metals known... [Pg.367]

The UV-vis spectral analysis confirms the appearance of a new charge-transfer absorption band of the complexes of colorless a-donors (R3MH) and the n-acceptor (TCNE). In accord with Mulliken theory, the absorption maxima (Act) of the [R3MH, TCNE] complexes shift toward blue with increasing ionization potential of the metal hydrides (i.e., tin > germanium > silicon) as listed in Table 8. [Pg.251]

An interesting method which combines sampling and analysis in one step has been described by Baier [ 19 ]. A germanium probe is dipped into the water and carefully withdrawn, bringing with it a layer of surface-active material. [Pg.24]

This layer is then analysed directly by internal reflectance infra-red spectroscopy. Since there is no handling of the sample, contamination is reduced to a minimum. However, only infra-red spectral analysis is possible with this system since the material absorbed on the germanium prism is always a mixture of compounds, and since the spectrophotometer used for the production of the spectra is not a high-precision unit, the information coming from this technique is limited. While identification of specific compounds is not usually possible, changes in spectra, which can be related to the time of day, season, or to singular events, can be observed. [Pg.25]

The above analysis reveals that some of the thermochemical data for organotin compounds may not be as accurate as one could hope. Although the information is in general of much better quality than in the case of germanium and lead analogues, we believe that some values in Table 3 should be redetermined. Other examples could have been used to illustrate this point (see also the next section), but once again we wish to resist the temptation of recommending data that in some cases conflict with the available experimental results. By a judicious use of the Laidler terms in Table 4 and/or correlations similar to those in equation 2, it is rather simple to assess other values from Table 3 and predict new data. [Pg.259]

It is somewhat disappointing to realize that the thermochemistry of germanium, tin and lead organometallic compounds is still at the level achieved ten years ago, in contrast to the considerable recent efforts to probe the energetics of the silicon analogues. The data analysis in the previous sections shows that many key values are either missing or require experimental confirmation. To a certain extent, an overall discussion of the thermochemical data for Ge, Sn and Pb is therefore hindered by the probable inaccuracies and the uncertainties that affect those values. [Pg.262]

Two methods were examined for digestion of biological samples prior to trace element analysis. In the first one a nitric acid-hydrogen peroxide-hydrofluoric acid mixture was used in an open system, and in the second one nitric acid in a closed Teflon bomb. The latter method was superior for Ge determination, however, germanium was lost whenever hydrogen fluoride had to be added for disolving sihcious material. End analysis by ICP-AES was used for Ge concentrations in the Xg/g range13. [Pg.344]

I. THE METHYLATION OF GERMANIUM COMPOUNDS UNDER ENVIRONMENTAL OR MODEL ENVIRONMENTAL CONDITIONS A. Methods of Analysis... [Pg.843]


See other pages where Germanium analysis is mentioned: [Pg.126]    [Pg.167]    [Pg.126]    [Pg.167]    [Pg.280]    [Pg.475]    [Pg.320]    [Pg.395]    [Pg.125]    [Pg.673]    [Pg.371]    [Pg.407]    [Pg.464]    [Pg.343]    [Pg.210]    [Pg.1262]    [Pg.450]    [Pg.64]    [Pg.148]    [Pg.267]    [Pg.180]    [Pg.250]    [Pg.256]    [Pg.289]    [Pg.391]    [Pg.248]    [Pg.268]    [Pg.292]    [Pg.302]    [Pg.343]    [Pg.344]    [Pg.346]    [Pg.686]    [Pg.844]    [Pg.399]    [Pg.794]    [Pg.54]    [Pg.104]    [Pg.131]   
See also in sourсe #XX -- [ Pg.191 ]

See also in sourсe #XX -- [ Pg.291 ]

See also in sourсe #XX -- [ Pg.11 ]




SEARCH



© 2024 chempedia.info