Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions fused salts

Some transition metals (Co, Au, Ag, Mn, Cr, Cu, Ni) can be efficiently reduced electrolytically from aqueous or fused salt solutions. Other, more electropositive elements (Nb, Ta) can be reduced only electrolytically, from fused salts. The light rare earths (La-Nd) are produced commercially by electrolysis from LnCU mixed with NaCl, KCl, or CaCl2 and on the research scale by electrolysis from LnFa or Ln203 mixed with LiF, CaF2, or BaF2T... [Pg.40]

Fused salt solutions may be found in which the solubility of these oxides is appreciable at high temperatures and from which crystals grow as the solution is cooled. Some of the fluxes which have been used for growth of the oxides of concern here are (a) potassium nitrate-sodium nitrate, (b) lead fluoride-bismuth oxide, (c) lead oxide-bismuth oxide, and (d) lithium hydroxide-boric acid-molybdenum oxide. Temperatures frequently are in the range of 1300°C. [Pg.383]

A number of fused salt solution properties are in substance dependent on the activity of one component in a mixture. Frequently such data can be described in terms of a limiting solution law which expresses ideal behavior, since fused mixtures are found to be remarkably ideal considering the concentrated solutions of ions involved, particularly for those involving ions of similar charge, size, and polarizability. In this section selected examples of the various types of measurements which have been made will be presented and general observations made on the equilibrium properties of these mixtures as affected by the properties of the component ions. Applicable thermodynamic principles are well-covered by Blander (1964). [Pg.100]

Figure III-9u shows some data for fairly ideal solutions [81] where the solid lines 2, 3, and 6 show the attempt to fit the data with Eq. III-53 line 4 by taking ff as a purely empirical constant and line 5, by the use of the Hildebrand-Scott equation [81]. As a further example of solution behavior, Fig. III-9b shows some data on fused-salt mixtures [83] the dotted lines show the fit to Eq. III-SS. Figure III-9u shows some data for fairly ideal solutions [81] where the solid lines 2, 3, and 6 show the attempt to fit the data with Eq. III-53 line 4 by taking ff as a purely empirical constant and line 5, by the use of the Hildebrand-Scott equation [81]. As a further example of solution behavior, Fig. III-9b shows some data on fused-salt mixtures [83] the dotted lines show the fit to Eq. III-SS.
The general characteristics of all these elements generally preclude their extraction by any method involving aqueous solution. For the lighter, less volatile metals (Li, Na, Be, Mg, Ca) electrolysis of a fused salt (usually the chloride), or of a mixture of salts, is used. The heavier, more volatile metals in each group can all be similarly obtained by electrolysis, but it is usually more convenient to take advantage of their volatility and obtain them from their oxides or chlorides by displacement, i.e. by general reactions such as... [Pg.122]

The tables in this section contain values of the enthalpy and Gibbs energy of formation, entropy, and heat capacity at 298.15 K (25°C). No values are given in these tables for metal alloys or other solid solutions, for fused salts, or for substances of undefined chemical composition. [Pg.532]

Solutions of alkah metal and ammonium iodides in Hquid iodine are good conductors of electricity, comparable to fused salts and aqueous solutions of strong acids. The Hquid is therefore a polar solvent of considerable ionising power, whereas its own electrical conductivity suggests that it is appreciably ionized, probably into I" and I (triodide). Iodine resembles water in this respect. The metal iodides and polyiodides are bases, whereas the iodine haHdes are acids. [Pg.360]

Iron hahdes react with haHde salts to afford anionic haHde complexes. Because kon(III) is a hard acid, the complexes that it forms are most stable with F and decrease ki both coordination number and stabiHty with heavier haHdes. No stable F complexes are known. [FeF (H20)] is the predominant kon fluoride species ki aqueous solution. The [FeF ] ion can be prepared ki fused salts. Whereas six-coordinate [FeCy is known, four-coordinate complexes are favored for chloride. Salts of tetrahedral [FeCfy] can be isolated if large cations such as tetraphenfyarsonium or tetra alkylammonium are used. [FeBrJ is known but is thermally unstable and disproportionates to kon(II) and bromine. Complex anions of kon(II) hahdes are less common. [FeCfy] has been obtained from FeCfy by reaction with alkaH metal chlorides ki the melt or with tetraethyl ammonium chloride ki deoxygenated ethanol. [Pg.436]

The deposition of RE metals from aqueous solutions does not work because of the highly electropositive nature of the REE. Therefore, industrial production of RE metals is carried out by fused salt electrolysis or metaHothermic reduction. [Pg.546]

Silver nitrate forms colorless, rhombic crystals. It is dimorphic and changes to the hexagonal rhombohedral form at 159.8°C. It melts at 212°C to a yellowish Hquid which solidifies to a white, crystalline mass on cooling. An alchemical name, lunar caustic, is stiU appHed to this fused salt. In the presence of a trace of nitric acid, silver nitrate is stable to 350°C. It decomposes at 440°C to metallic silver, nitrogen, and nitrogen oxides. Solutions of silver nitrate are usually acidic, having a pH of 3.6—4.6. Silver nitrate is soluble in ethanol and acetone. [Pg.89]

BeryUium chloride [7787-47-5], BeCl2, is prepared by heating a mixture of beryUium oxide and carbon in chloride at 600—800°C. At pressures of 2.7—6.7 Pa (0.02—0.05 mm Hg) beryllium chloride sublimes at 350—380°C. It is easily hydrolyzed by water vapor or in aqueous solutions. BeryUium chloride hydrate [14871-75-1] has been obtained by concentrating a saturated aqueous solution of the chloride in a stream of hydrogen chloride. ChloroberyUate compounds have not been isolated from aqueous solutions, but they have been isolated from anhydrous fused salt mixtures. [Pg.75]

Chemical Production. Electrolytic production of chemicals is conducted either by solution (water) electrolysis or fused-salt electrolysis. Fluorine, chlorine, chlorate, and manganese dioxide are Hberated from water solutions magnesium and sodium are generated from molten salt solutions. [Pg.521]

The metals that are produced by electrolysis (81) are included in Table 1. Fused salt processes are used when the reactivity of the metal does not allow electrowinning from aqueous solutions. Manganese is the most reactive metal that is produced by electrolysis of an aqueous solution. [Pg.79]

B) t-Butyl 2-Methyl-5-Methoxy-3-lndolylacetate t-Butyl alcohol (25 ml) and fused zinc chloride (0.3 g) are added to the anhydride from Part A. The solution is refluxed for 16 hours and excess alcohol is removed in vacuo. The residue is dissolved in ether, washed several times with saturated bicarbonate, water, and saturated salt solution. After drying over magnesium sulfate, the solution is treated with charcoal, evaporated, and flushed several times with Skellysolve B for complete removal of alcohol. The residual oily ester (18 g, 93%) is used without purification. [Pg.811]

All reactions of metals in aqueous or non-aqueous solutions or in fused salts where one area of the metal surface is predominantly anodic and the other is predominantly cathodic so that the sites are physically identifiable. [Pg.20]

Electrochemically, the system metal/molten salt is somewhat similar to the system metal/aqueous solution, although there are important differences, arising largely from differences in temperature and in electrical conductivity. Most fused salts are predominantly ionic, but contain a proportion of molecular constituents, while pure water is predominantly molecular, containing very low activities of hydrogen and hydroxyl ions. Since the aqueous system has been extensively studied, it may be instructive to point out some analogues in fused-salt systems. [Pg.435]

It is usual to choose a container metal for fused salts sufficiently noble for the displacement reaction (2.16) to be negligible, and the most important aspects of corrosion are, as in aqueous solutions, those which involve reducible impurities, although in a salt melt there is also the additional possibility of a reducible anion (see above). All such factors can be described as controlling the oxidising power of the melt, which can be defined in terms of a redox potential just as in aqueous solutions The redox potential is expressed by relationships of the form... [Pg.436]

Since metals are electronic conductors, the anodic and cathodic reactions will not necessarily occur at the same site, and anodic and cathodic areas can develop as in aqueous solutions. For example, wash-line attack is often a feature of corrosion by fused salts in contact with air. [Pg.439]

Eustace noticed the correlation between asymmetric /V-substitution and low melting points (at temperatures > 15 °C) of the substances [75] observed in this study. The importance of sufficiently high specific densities of the fused salts" for an efficient separation of the complex phase and the aqueous solution was emphasized. Mixtures of various quaternary ammonium... [Pg.182]

Ion pairs (A+B ) are formed in fused salts through a process in which the cations or anions of the solvent and of the solute exchange positions in the solvent lattice until the cations and anions occupy neighbouring positions. If the solvent is denoted as XY, then this process can be expressed by the scheme ... [Pg.38]

Electrophoresis can be carried out using paper or a gel as the supporting medium. Typically, it can only be carried out in media compatible with water because buffers or salt solutions are required to carry the electric current required for separation. CE is carried out in a fused-silica capillary filled with buffer. [Pg.285]


See other pages where Solutions fused salts is mentioned: [Pg.532]    [Pg.527]    [Pg.446]    [Pg.532]    [Pg.527]    [Pg.446]    [Pg.335]    [Pg.67]    [Pg.2785]    [Pg.395]    [Pg.376]    [Pg.99]    [Pg.21]    [Pg.435]    [Pg.1059]    [Pg.179]    [Pg.515]    [Pg.583]    [Pg.582]    [Pg.20]    [Pg.115]    [Pg.249]    [Pg.305]   
See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Fused salts

© 2024 chempedia.info