Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functionalization methods other reactions

Substitution reactions at secondary hydroxyls are generally performed either for analysis of structure or to serve a protective function during other reactions. Etherification of the nonanomeric hydroxyls was an important structural tool in the analysis of oligosaccharide and polysaccharide structure. Methyl ethers have been employed for structural determination for more than 75 years. Thus, methyl ether formation in a polysaccharide results in substitution only at free hydroxyls. Subsequent analysis of the methylated derivatives reveals positions previously occupied in glycosidic linkage. Reagents used for this purpose have evolved from dimethylsulfate to the commonly employed method of Hakomori using sodium hydride and dimethylsulfoxide. [Pg.56]

In many cases, these cyclic siloxanes have to be removed from the system by distillation or fractionation, in order to obtain pure products. On the other hand, cyclic siloxanes where n = 3 and n = 4 are the two most important monomers used in the commercial production of various siloxane polymers or oligomers via the so-called equilibration or redistribution reactions which will be discussed in detail in Sect. 2.4. Therefore, in modern silicone technology, aqueous hydrolysis of chloro-silanes is usually employed for the preparation of cyclic siloxane monomers 122> more than for the direct synthesis of the (Si—X) functional oligomers. Equilibration reactions are the method of choice for the synthesis of functionally terminated siloxane oligomers. [Pg.11]

Anionic polymerizations are well suited for the synthesis of polymers fitted at chain end with reactive functions. Block copolymers can result from reactions between suitable functions carried by two different functional precursors. In some cases the carbanionic sites themselves are the reactive functions. In other cases, functional polymers (obtained anionically, or by other methods) can be reacted with low molecular weight coupling agents. Here are a few examples ... [Pg.166]

The Buchwald-Hartwig aryl animation methodology cited above in this section was engaged by Hartwig and others to synthesize AT-arylindoles 377 [469]. Carbazole can be N-arylated under these same conditions with p-cyanobromobenzene (97% yield). Aryl chlorides also function in this reaction. The power of this animation method is seen by the facile synthesis of tris-carbazole 378 [469c]. [Pg.160]

The examples illustrated in the almost 100 schemes in this chapter demonstrate how versatile donor-substituted allenes can be in synthetic processes. The major applications concern addition reactions and cycloadditions to the allenic double bonds, which furnish products with valuable functional groups. Of particular interest are metalations - usually at C-l of the allene unit - followed by reactions with electrophiles that deliver compounds which can often be used for cyclization reactions. A variety of highly substituted and functionalized heterocycles arises from these flexible methods, which cannot be obtained by other reactions. Many of these transformations proceed with good regioselectivity and excellent stereoselection. [Pg.485]

Both methods require that the polymerization of the first monomer not be carried to completion, usually 90% conversion is the maximum conversion, because the extent of normal bimolecular termination increases as the monomer concentration decreases. This would result in loss of polymer chains with halogen end groups and a corresponding loss of the ability to propagate when the second monomer is added. The final product would he a block copolymer contaminated with homopolymer A. Similarly, the isolated macroinitiator method requires isolation of RA X prior to complete conversion so that there is a minimum loss of functional groups for initiation. Loss of functionality is also minimized by adjusting the choice and amount of the components of the reaction system (activator, deactivator, ligand, solvent) and other reaction conditions (concentration, temperature) to minimize normal termination. [Pg.322]

Except for radioactive decays, other reaction rate coefficients depend on temperature. Hence, for nonisothermal reaction with temperature history of T(t), the reaction rate coefficient is a function of time k(T(t)) = k(t). The concentration evolution as a function of time would differ from that of isothermal reactions. For unidirectional elementary reactions, it is not difficult to find how the concentration would evolve with time as long as the temperature history and hence the function of k(t) is known. To illustrate the method of treatment, use Reaction 2A C as an example. The reaction rate law is (Equation 1-51)... [Pg.29]

The dehydration reactions initiated by eliminating a hydroxyl group from an enediol are discussed in the present article. The products (usually dicarbonyl compounds) of these eliminations are normally transient intermediates, and undergo further reaction. The final products formed are determined by the carbohydrate reacting, the conditions of reaction, and the character of the medium. Except for a Section on analytical methods (see p. 218), the subject matter is restricted to aqueous acids and bases. The presence of compounds other than the carbohydrate under study has only been considered where it has helped to elucidate the mechanism involved. The approach here is critical and interpretative, with emphasis on mechanism. An attempt has been made to demonstrate how similar reactions can logically lead to the various products from different carbohydrates a number of speculative mechanisms are proposed. It is hoped that this treatment will emphasize the broad functions of these reactions, an importance that is not fully recognized. No claim is made for a complete coverage of the literature instead, discussion of results in the articles that best illustrate the principles involved has been included. [Pg.162]

Creep, stress relaxation and set are all methods of investigating the result of an applied stress or strain as a function of time. Creep is the measurement of the increase of strain with time under constant force stress relaxation is the measurement of change of stress with time under constant strain and set is the measurement of recovery after the removal of an applied stress or strain. It is important to appreciate that there are two distinct causes for the phenomena of creep, relaxation and set, the first physical and the second chemical. The physical effect is due to rubbers being viscoelastic, as discussed in Chapter 9, and the response to a stress or strain is not instantaneous but develops with time. The chemical effect is due to ageing of the rubber by oxidative chain scission, further crosslinking or other reaction. [Pg.201]

In this chapter we have described the photophysics and photochemistry of C6o/C70 and of fullerene derivatives. On the one hand, C6o and C70 show quite similar photophysical properties. On the other hand, fullerene derivatives show partly different photophysical properties compared to pristine C6o and C70 caused by pertuba-tion of the fullerene s TT-electron system. These properties are influenced by (1) the electronic structure of the functionalizing group, (2) the number of addends, and (3) in case of multiple adducts by the addition pattern. As shown in the last part of this chapter, photochemical reactions of C60/C70 are very useful to obtain fullerene derivatives. In general, the photoinduced functionalization methods of C60/C70 are based on electron transfer activation leading to radical ions or energy transfer processes either by direct excitation of the fullerenes or the reaction partner. In the latter case, both singlet and triplet species are involved whereas most of the reactions of electronically excited fullerenes proceed via the triplet states due to their efficient intersystem crossing. [Pg.740]


See other pages where Functionalization methods other reactions is mentioned: [Pg.416]    [Pg.1]    [Pg.70]    [Pg.388]    [Pg.352]    [Pg.490]    [Pg.576]    [Pg.255]    [Pg.257]    [Pg.261]    [Pg.268]    [Pg.274]    [Pg.277]    [Pg.166]    [Pg.311]    [Pg.25]    [Pg.139]    [Pg.338]    [Pg.312]    [Pg.39]    [Pg.659]    [Pg.172]    [Pg.174]    [Pg.97]    [Pg.137]    [Pg.146]    [Pg.753]    [Pg.366]    [Pg.391]    [Pg.165]    [Pg.288]    [Pg.29]    [Pg.482]    [Pg.186]    [Pg.110]    [Pg.110]    [Pg.505]    [Pg.331]    [Pg.152]    [Pg.241]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Functionalization methods

Functionalization methods reactions

Other Functionalities

Others methods

Reaction function

Reaction methods

© 2024 chempedia.info