Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Function calcium-dependent

Factor IV. Calcium ion, although essential, is required in only trace amounts for physiologic coagulation. Before such a decreased level could be attained, many other calcium-dependent body functions, such as myocardial contractihty, would fail and death would ensue. [Pg.174]

The extracellular domain of cadherins consists of a variable number of a repeated sequence of about 110 amino acids. This sequence is termed the cadherin repeat and resembles in overall structure, but not in sequence, the Ig like domains. The cadherin repeat is the characteristic motive common to all members of the cadherin superfamily. Classical and desmosomal cadherins contain five cadherin repeats, but as many as 34 repeats have been found in the FAT cadherin (see below). Cadherins are calcium-dependent cell adhesion molecules, which means that removal of Ca2+, e.g., by chelating agents such as EDTA, leads to loss of cadherin function. The Ca2+-binding pockets are made up of amino acids from two consecutive cadherin repeats, which form a characteristic tertiary structure to coordinate a single Ca2+ion [1]. [Pg.306]

In addition to intracellular heme-containing proteins, big-conductance calcium-dependent K+ (BKCa) channels and calcium-spark activated transient Kca channels in plasma membrane are also tar geted by CO [3]. As well known, nitric oxide (NO) also activates BKca channels in vascular smooth muscle cells. While both NO and CO open BKCa channels, CO mainly acts on alpha subunit of BKCa channels and NO mainly acts on beta subunit of BKca channels in vascular smooth muscle cells. Rather than a redundant machinery, CO and NO provide a coordinated regulation of BKca channel function by acting on different subunits of the same protein complex. Furthermore, pretreatment of vascular smooth muscle... [Pg.322]

Calcium-dependent regulation involves the calcium-calmodulin complex that activates smooth muscle MLCK, a monomer of approximately 135 kDa. Dephosphorylation is initiated by MLCP. MLCP is a complex of three proteins a 110-130 kDa myosin phosphatase targeting and regulatory subunit (MYPT1), a 37 kDa catalytic subunit (PP-1C) and a 20 kDa subunit of unknown function. In most cases, calcium-independent regulation of smooth muscle tone is achieved by inhibition of MLCP activity at constant calcium level inducing an increase in phospho-rMLC and contraction (Fig. 1). [Pg.1142]

A substance preformed, stored and then released from a neuron by a calcium dependent exocytotic mechanism activated by invading action potentials which induces a change in excitability and function of an adjacent neuron without entering the bloodstream. [Pg.31]

The synthesis of 5-HT can increase markedly under conditions requiring more neurotransmitter. Plasticity is an important concept in neurobiology. In general, this refers to the ability of neuronal systems to conform to either short- or long-term demands placed upon their activity or function (see Plasticity in Ch. 53). One of the processes contributing to neuronal plasticity is the ability to increase the rate of neurotransmitter synthesis and release in response to increased neuronal activity. Serotonergic neurons have this capability the synthesis of 5-HT from tryptophan is increased in a frequency-dependent manner in response to electrical stimulation of serotonergic soma [7]. The increase in synthesis results from the enhanced conversion of tryptophan to 5-HTP and is dependent on extracellular calcium ion. It is likely that the increased 5-HT synthesis results in part from alterations in the kinetic properties of tryptophan hydroxylase, perhaps due to calcium-dependent phosphorylation of the enzyme by calmodulin-dependent protein kinase II or cAMP-dependent protein kinase (PKA see Ch. 23). [Pg.233]

During the last ten years, it has become apparent that calcium-dependent papain-like peptidases called calpains (EC 3.4.22.17) represent an important intracellular nonlysosomal enzyme system [35][36], These enzymes show limited proteolytic activity at neutral pH and are present in virtually every eukaryotic cell type. They have been found to function in specific proteolytic events that alter intracellular metabolism and structure, rather than in general turnover of intracellular proteins. Calpains are composed of two nonidentical subunits, each of which contains functional calcium-binding sites. Two types of calpains, i.e., /i-calpain and m-calpain (formerly calpain I and calpain II, respectively), have been identified that differ in their Ca2+ requirement for activation. The activity of calpains is regulated by intracellular Ca2+ levels. At elevated cytoplasmic calcium concentrations, the precursor procal-pain associates with the inner surface of the cell membrane. This interaction seems to trigger autoproteolysis of procalpain, and active calpain is released into the cytoplasm [37]. [Pg.40]

These three catalytic functionalities are similar in practically all hydrolytic enzymes, but the actual functional groups performing the reactions differ among hydrolases. Based on the structures of their catalytic sites, hydrolases can be divided into five classes, namely serine hydrolases, threonine hydrolases, cysteine hydrolases, aspartic hydrolases, and metallohydrolases, to which the similarly acting calcium-dependent hydrolases can be added. Hydrolases of yet unknown catalytic mechanism also exist. [Pg.67]

All muscarinic receptors are members of the seven transmembrane domain, G protein-coupled receptors, and they are structurally and functionally unrelated to nicotinic ACh receptors. Activation of muscarinic receptors by an agonist triggers the release of an intracellular G-protein complex that can specifically activate one or more signal transduction pathways. Fortunately, the cellular responses elicited by odd- versus even-numbered receptor subtypes can be conveniently distinguished. Activation of Ml, M3, and M5 receptors produces an inosine triphosphate (IP3) mediated release of intracellular calcium, the release of diacylglyc-erol (which can activate protein kinase C), and stimulation of adenylyl cyclase. These receptors are primarily responsible for activating calcium-dependent responses, such as secretion by glands and the contraction of smooth muscle. [Pg.122]

CCAs (channel blockers influx inhibitors) have been used primarily for the treatment of cardiovascular disorders (e.g., supraventricular arrhythmias, angina, and hypertension). Agents such as verapamil exert their effects by modulating the influx of Ca across the cell membrane, thus interfering with calcium-dependent functions. Based partly on the common effects of lithium and this class of drugs (e.g., effects on Ca "" activity), the CCAs have been studied as a potential treatment for mania. Janicak et al. (251) reported the results of a 3-week, double-blind comparison of verapamil versus placebo, which did not demonstrate a beneficial effect for verapamil (up to 480 mg/day) in 33 acutely manic hospitalized patients. [Pg.206]

Cardiac muscle is highly dependent on calcium influx for normal function. Impulse generation in the sinoatrial node and conduction in the atrioventricular node—so-called slow-response, or calcium-dependent, action potentials—may be reduced or blocked by all of the calcium channel blockers. Excitation-contraction coupling in all cardiac cells requires calcium influx, so these drugs reduce cardiac contractility in a dose-dependent fashion. In some cases, cardiac output may also decrease. This reduction in cardiac mechanical function is another mechanism by which the calcium channel blockers can reduce the oxygen requirement in patients with angina. [Pg.262]

The calcium-independent ATPase of the lipid modified preparations is not only different from the calcium-dependent ATPase but also from the calcium-independent ATPase of native preparations — the basic ATPase — which has a lower nucleotide specificity126. The experiments in which the lipid matrix of the sarcoplasmic membranes has been replaced by lipid compounds not present in native membranes reveal a high degree of functional flexibility of the enzyme. On the other hand, a few residual lipids in the protein are sufficient to prevent these changes in the structure of the enzyme and to preserve its calcium sensitivity. [Pg.34]

In binding experiments, the affinity of magnesium ADP to native membranes and to the isolated calcium dependent ATPase was found to be considerably lower than that of magnesium ATP173. On the other hand, from the inhibition of the calcium-dependent ATPase or the activation of calcium release and ATP synthesis apparent affinities for ADP are obtained that are very similar to those of ATP (Fig. 12). The affinity of ADP for the enzyme apparently depends on its functional state. The affinity of ADP for the membranes under conditions of calcium release depends markedly on the pH of the medium. When the medium pH is reduced from 7.0 to 6.0, the affinity drops by a factor of 10. At pH 7.0 the affinity of the membrane for ADP corresponds to the affinity for ATP to the high affinity binding sites in the forward running mode of the pump. In contrast to the complex dependence of the forward reaction on the concentration of ATP, the dependence of the reverse reaction on ADP seems to follow simple Michaelis-Menten kinetics. [Pg.38]


See other pages where Function calcium-dependent is mentioned: [Pg.191]    [Pg.553]    [Pg.469]    [Pg.117]    [Pg.235]    [Pg.310]    [Pg.1175]    [Pg.463]    [Pg.17]    [Pg.510]    [Pg.93]    [Pg.323]    [Pg.253]    [Pg.334]    [Pg.255]    [Pg.943]    [Pg.350]    [Pg.130]    [Pg.70]    [Pg.136]    [Pg.223]    [Pg.144]    [Pg.24]    [Pg.157]    [Pg.379]    [Pg.102]    [Pg.1257]    [Pg.250]    [Pg.1294]    [Pg.943]    [Pg.995]    [Pg.65]    [Pg.14]    [Pg.28]    [Pg.42]    [Pg.584]    [Pg.564]   
See also in sourсe #XX -- [ Pg.445 , Pg.446 , Pg.447 , Pg.448 , Pg.449 ]




SEARCH



Calcium functions

Calcium/calmodulin-dependent protein kinases function

Dependence functional

© 2024 chempedia.info