Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel cell materials future trends

The major function of a bipolar plate, or simply called "plate," is to connect each cell electrically and to regulate the reactant gas (typically, hydrogen and air in a hydrogen fuel cell) or reactant liquid (typically, methanol in a DMFC) and liquid or gas coolant supply as well as reaction product removal in desired patterns. This plate must be at least electrically conductive and gas and/or liquid tightened. Considering these important functions and the larger fraction of volume, weight, and cost of the plate in a fuel cell, it is worthwhile to construct this chapter with emphasis on the current status and future trend in bipolar plate research and development, mainly for the plate materials and fabrication process. [Pg.306]

Abstract Whereas much attention has been paid to the environmental aspects of the life cycle of fuel cell fuel production, emphasis is placed on fuel cell hardware and materials recovery, including component reuse, remanufacturing, materials recycling and energy recovery for fuel cell maintenance and retirement processes. Fuel cell hardware recycling is described and issues related to the recycling infrastructure and the compatibihty of fuel cell hardware and materials are discussed. The role of materials selection and recovery in the fuel cell hfe cycle is described. Future trends for fuel cells centered on voluntary and mandatory recovery and the movement of life cycle considerations from computational research laboratories to design complete the discussion. [Pg.132]

Abstract This review is intended to provide the recent status in the development of polymeric-electrolyte (proton-exchange) membranes for the improvement of fuel cell performance based primarily on the preceding chapters of this book. Special attention is paid to the modification of present membranes, recent novel strategies for preparation of membranes, conceptual design of new membrane materials, and also promising approaches to overcome issues that severely restrict commercialization. The critical role of the materials and membranes and also relevant infrastructure of electrode is addressed. The new possibihties to improve technologies for implementation, and future trends are briefly examined. [Pg.401]


See other pages where Fuel cell materials future trends is mentioned: [Pg.972]    [Pg.2]    [Pg.133]    [Pg.184]    [Pg.146]    [Pg.381]    [Pg.1]   


SEARCH



Fuel cell materials

Fuel, future

Future materials

Future trends

Future trends materials

© 2024 chempedia.info