Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel phenols

By the Fries reaction. This is a variant of the Friedel-Craft reaction it consists in the conversion of an ester of a phenol to the corresponding o- and p-hydroxyketone, or a mixture of both, by treatment with anhydrous aluminium chloride ... [Pg.727]

Unusual cyclocarbonylation of allylic acetates proceeds in the presence of acetic anhydride and an amine to afford acetates of phenol derivatives. The cinnamyl acetate derivative 408 undergoes carbonylation and Friedel-Crafts-type cyclization to form the a-naphthyl acetate 410 under severe condi-tions[263,264]. The reaction proceeds at 140-170 under 50-70 atm of CO in the presence of acetic anhydride and Et N. Addition of acetic anhydride is essential for the cyclization. The key step seems to be the Friedel-Crafts-type cyclization of an acylpalladium complex as shown by 409. When MeOH is added instead of acetic anhydride, /3,7-unsaturated esters such as 388 are... [Pg.344]

Other typical electrophilic aromatic substitution reactions—nitration (second entry) sul fonation (fourth entry) and Friedel-Crafts alkylation and acylation (fifth and sixth entnes)—take place readily and are synthetically useful Phenols also undergo elec trophilic substitution reactions that are limited to only the most active aromatic com pounds these include mtrosation (third entry) and coupling with diazomum salts (sev enth entry)... [Pg.1002]

As shown in the sixth entry of Table 24 4 C acylation of phenols is observed under the customary conditions of the Friedel-Crafts reaction (treatment with an acyl chloride or acid anhydride m the presence of aluminum chloride) In the absence of aluminum chloride however O acylation occurs instead... [Pg.1005]

Thus ring acylation of phenols is observed under Friedel-Crafts conditions because the presence of aluminum chloride causes that reaction to be subject to thermodynamic (equi librium) control... [Pg.1006]

Dienes can also be used ia Friedel-Crafts cyclo alkylations. For example, treatment of phenol with 2,5-dimethyl-2,4 hexadiene gives 5,5,8,8-tetramethyl,6,7-dihydro-2-naphthol. [Pg.555]

Aromatics containing electron releasing groups such as phenols, dim ethyl am in oben 2en e and indole are formylated by 2-ethoxy-l,3-dithiolane in the presence of boron trifluoroetherate, followed by hydrolysis (114). The preformed dithiolanium tetrafluoroborate also undergoes Friedel-Crafts reaction with aromatics such as dim ethyl am in oben 2en e and indole (115), and was used to generate dithiolanium derivatives (formyl precursors) from the enoltrimethylsilyl ether derivatives (116). [Pg.559]

Friedel-Crafts acylation using nittiles (other than HCN) and HCI is an extension of the Gattermann reaction, and is called the Houben-Hoesch reaction (120—122). These reactions give ketones and are usually appHcable to only activated aromatics, such as phenols and phenoHc ethers. The protonated nittile, ie, the nitrilium ion, acts as the electrophilic species in these reactions. Nonactivated ben2ene can also be acylated with the nittiles under superacidic conditions 95% trifluoromethanesulfonic acid containing 5% SbF (Hg > —18) (119). A dicationic diprotonated nittile intermediate was suggested for these reactions, based on the fact that the reactions do not proceed under less acidic conditions. The significance of dicationic superelectrophiles in Friedel-Crafts reactions has been discussed (123,124). [Pg.559]

Bromination can be conveniently effected by transfer of bromine from one nucleus to another. As the Friedel-Crafts isomerization of bromoaromatic compounds generally takes place through an intermolecular mechanism, the migrating bromine atom serves as a source of positive bromine, thus effecting ring brominations (161,162). 2,4,6-Tribromophenol, for example, has been prepared by bromination of phenol with dibromobenzene. [Pg.561]

The most important appHcation of metal alkoxides in reactions of the Friedel-Crafts type is that of aluminum phenoxide as a catalyst in phenol alkylation (205). Phenol is sufficientiy acidic to react with aluminum with the formation of (CgH O)2Al. Aluminum phenoxide, when dissolved in phenol, greatiy increases the acidic strength. It is beheved that, similar to alkoxoacids (206) an aluminum phenoxoacid is formed, which is a strong conjugate acid of the type HAl(OCgH )4. This acid is then the catalyticaHy active species (see Alkoxides, metal). [Pg.564]

Alkylation. Benzene and phenol feedstocks are readily alkylated under Friedel-Crafts conditions to prepare extensive families of alkylated aromatics. These materials generally are intermediates in the production of surfactants or detergents such as linear alkylbenzenesulfonate (LABS) and alkylphenolethoxylate (APE). Other uses include the production of antioxidants, plasticizers, and lube additives. [Pg.436]

All lation of Phenols. The approach used to synthesize commercially available alkylphenols is Friedel-Crafts alkylation. The specific procedure typically uses an alkene as the alkylating agent and an acid catalyst, generally a sulfonic acid. Alkene and catalyst interact to form a carbocation and counter ion (5) which interacts with phenol to form a 7T complex (6). This complex is held together by the overlap of the filled TT-orbital of the aromatic... [Pg.58]

Several methods are available to supplement the phenol alkylations described above. Primary alkylphenols can be produced using the more traditional Friedel-Crafts reaction. Thus an -butylphenol can be synthesized direcdy from a butyl haUde, phenol, and mild Lewis acid catalyst. Alternatively, butyryl chloride can be used to acylate phenol producing a butyrophenone. Reduction with hydrazine (a Wolff-Kishner reduction) generates butylphenol. [Pg.59]

Cumene. Cumene (qv) is produced by Friedel-Crafts alkylation of benzene by propylene (103,104). The main appHcation of cumene is the production of phenol (qv) and by-product acetone (qv). Minor amounts are used in gasoline blending (105). [Pg.130]

Benzoyl chloride is an important benzoylating agent. In this use the benzoyl radical is introduced into alcohols, phenols, amines, and other compounds through the Friedel-Crafts reaction and the Schotten-Baumaim reaction. Other significant uses are in the production of benzoyl peroxide [94-56-0], benzophenone [119-61-9], and in derivatives employed in the fields of dyes, resins, perfumes, pharmaceuticals, and as polymerization catalysts. [Pg.56]

The general discussion (Section 4.02.1.4.1) on reactivity and orientation in azoles should be consulted as some of the conclusions reported therein are germane to this discussion. Pyrazole is less reactive towards electrophiles than pyrrole. As a neutral molecule it reacts as readily as benzene and, as an anion, as readily as phenol (diazo coupling, nitrosation, etc.). Pyrazole cations, formed in strong acidic media, show a pronounced deactivation (nitration, sulfonation, Friedel-Crafts reactions, etc.). For the same reasons quaternary pyrazolium salts normally do not react with electrophiles. [Pg.236]

In recent years there have been comparatively few developments in phenolic resin technology apart from the so-called Friedel-Crafts polymers introduced in the 1960s and the polybenzoxazines announced in 1998 which are discussed briefly at the end of the chapter. [Pg.635]

Amongst the important heat-resisting cross-linked polymers are the phenolic resins (chapter 23), the Friedel-Crafts resins (also Chapter 23), the polyphenylenes (Chapter 21) and certain polysulphides (also Chapter 21). One problem of these materials is that they tend to be brittle. This is overcome in part... [Pg.846]

Initiation. A Friedel-Craft acid (hydrochloric acid, water, phenol) is used as initiator together with a proton source ( co-initiator , BF3 or AICI3 are the most common). The mixture produces a catiogen which is the true initiating species. [Pg.605]

Friedel-Crafts alkylation Alcohols in combination with acids serve as sources of carbocations. Attack of a carbocation on the electron-rich ring of a phenol brings about its alkylation. [Pg.1003]

Friedel-Crafts acylation In the presence of aluminum chloride, acyl chlorides and carboxylic acid anhydrides acylate the aromatic ring of phenols. [Pg.1004]

It IS by a similar process that alizaiin has been synthesised w ith the oliject of ascertaining its constitution (see Notes on Prep. 110, p. 316), When two molecules of phenol and one molecule of phthalic anhydride are heated together with cone, sulphuric acid, then phenolphthalein is formed (Baeyei). Its constitution has been determined by its synthesis from phthalyl chloride and benzene by means of the Friedel-Crafts leaction (see Notes on Piep. 100, p. 309). Phthalyl chloride and benzene yield in presence of AlCl., phthalophenone. [Pg.296]

The mechanism for that step is closely related to that of the Friedel-Crafts acylation. Upon subsequent hydrolysis the o-substituted Lewis acid-coordinated phenolate 7 is converted to the free o-acylphenol 2. By an analogous route, involving an electrophilic aromatic substitution para to the phenolate oxygen, the corresponding para-acylphenol is formed. [Pg.128]

The applicability of the Gattermann synthesis is limited to electron-rich aromatic substrates, such as phenols and phenolic ethers. The introduction of the formyl group occurs preferentially para to the activating substituent (compare Friedel-Crafts acylation). If the /jara-position is already substituted, then the ort/zo-derivative will be formed. [Pg.134]

Reaction of the potassium salt of salicylaldehyde with chlo-roacetone affords first the corresponding phenolic ether aldol cyclization of the aldehyde with the ketonic side chain affords the benzofuran (1). Reduction of the carbonyl group by means of the Wolf-Kischner reaction affords 2-ethyl-benzofuran. Friedel-Crafts acylation with anisoyl chloride proceeds on the remaining unsubstituted position on the furan ring (2). The methyl ether is then cleaved by means of pyridine hydrochloride (3). lodina-tion of the phenol is accomplished by means of an alkaline solution of iodine and potassium iodide. There is thus obtained benziodarone (4)... [Pg.314]

The first step in the sequence may involve Friedel-Crafts-type condensation of resorcinol with the enolate of 10 to afford the unsaturated ester, 11. Alkylation of the free phenol on 12 by means of ethyl bromoacetate affords chromonar (13). ... [Pg.331]

Starting material for the first of these agents can in principle be obtained by alkylation of phenol with benzyl chloride 89. Cyclization of the product (90) under Friedel-Crafts conditions leads directly to isoxepac (91). ... [Pg.238]

For example /-butyl phenyl ether with aluminium chloride forms para-t-butyl phenol155. Often the de-alkylated phenol is also formed in considerable quantity. The reaction formally resembles the Fries and Claisen rearrangements. Like the Fries rearrangement the question of inter- or intramolecularity has not been settled, although may experiments based on cross-over studies156, the use of optically active ethers157 and comparison with product distribution from Friedel-Crafts alkylation of phenols158 have been carried out with this purpose in view. [Pg.476]

This rearrangement ensues principally according to the same scheme as shown in equation 15 yielding o- and/or p-sulfonyl-substituted phenols. Yields under Friedel-Crafts conditions are poor72 only under photochemical conditions73 or in exceptional cases74 are the yields over 10-25%. [Pg.171]

Formaldehyde-to-phenol ratios, 404 V-Formyl amines, 158 Fourier transform infrared (FTIR) spectrometry, 116, 300, 387, 407-408 Fradet, Alain, 17 Free-radical copolymerization, 59 Friedel-Crafts acrylation polymerization, 332-334... [Pg.584]


See other pages where Friedel phenols is mentioned: [Pg.665]    [Pg.507]    [Pg.561]    [Pg.59]    [Pg.59]    [Pg.102]    [Pg.953]    [Pg.310]    [Pg.119]    [Pg.122]    [Pg.104]    [Pg.227]    [Pg.130]    [Pg.157]    [Pg.305]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Friedel Crafts acylation of phenol

Friedel-Crafts alkylation of phenols

Friedel-Crafts alkylations free phenols, alkylation

Friedel-Crafts reactions of phenols

Phenol Friedel Crafts acylation

Phenol Friedel Crafts alkylation

Phenol, m-methoxybenzoylation Friedel-Crafts reaction

Phenolic resins Friedel-Crafts and related polymers

Phenols Friedel-Crafts reactions

© 2024 chempedia.info