Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts alkylation acids

An elegant and efficient synthesis of 6,11-dihydro-ll-ethyl-57/-dibenz[6,c]azepine derivatives 53 has been described which involves a BFs-catalysed aromatic amino-Claisen rearrangement of 51a-d to 52a-d followed by an intramolecular alkene Friedel-Crafts alkylation (acid catalysed) to access the 7-membered ring in 53 in high yield. With the amino-Claisen rearrangement of 51e, an inseparable mixture of 54e and 54e was obtained, since in this case both ortho positions in 56 are free for the rearrangement <04SL2721>. [Pg.395]

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

Tertiary, benzyl, and aHyhc nitro compounds can also be used as Friedel-Crafts alkylating agents eg, reaction of (CH2)3CN02 (2-nitro-2-methyl propane [594-70-7]) with anisole in the presence of SnCl gives 4-/-butylanisole [5396-38-3] (7). SoHd acids, such as perfluorodecanesulfonic acid [335-77-3], and perfluorooctanesulfonic acid [1763-23-1] have been used as catalysts for regio-selective alkylations (8). [Pg.551]

Optically active 2-arylalkanoic acid esters have been prepared by the Friedel-Crafts alkylation of arenes with optically active a-sulfonyloxy esters (40). Friedel-Crafts alkylation of ben2ene with (5)-methyl 2-(chlorosulfonyloxy)- or 2-(mesyloxy)propionate proceeded with predorninant inversion of configuration (<97%) to give (5)-methyl 2-phenylpropionate. [Pg.554]

In addition, boron, aluminum, and gallium tris(triduoromethanesulfonates) (tridates), M(OTf)2 and related perduoroalkanesulfonates were found effective for Friedel-Crafts alkylations under mild conditions (200). These Lewis acids behave as pseudo haUdes. Boron tris(tridate) shows the highest catalytic activity among these catalysts. A systematic study of these catalysts in the alkylation of aromatics such as benzene and toluene has been reported (201). [Pg.564]

Friedel-Crafts (Lewis) acids have been shown to be much more effective in the initiation of cationic polymerization when in the presence of a cocatalyst such as water, alkyl haUdes, and protic acids. Virtually all feedstocks used in the synthesis of hydrocarbon resins contain at least traces of water, which serves as a cocatalyst. The accepted mechanism for the activation of boron trifluoride in the presence of water is shown in equation 1 (10). Other Lewis acids are activated by similar mechanisms. In a more general sense, water may be replaced by any appropriate electron-donating species (eg, ether, alcohol, alkyl haUde) to generate a cationic intermediate and a Lewis acid complex counterion. [Pg.351]

All lation of Phenols. The approach used to synthesize commercially available alkylphenols is Friedel-Crafts alkylation. The specific procedure typically uses an alkene as the alkylating agent and an acid catalyst, generally a sulfonic acid. Alkene and catalyst interact to form a carbocation and counter ion (5) which interacts with phenol to form a 7T complex (6). This complex is held together by the overlap of the filled TT-orbital of the aromatic... [Pg.58]

Alkylation of furan and thiophene has been effected with alkenes and catalysts such as phosphoric acid and boron trifluoride. In general, Friedel-Crafts alkylation of furans or thiophenes is not preparatively useful, partly because of polymerization by the catalyst and partly because of polyalkylation. [Pg.53]

FRIEDEL - CRAFTS Alkylation-Acylation Alkylation or acylation ol aromatic compounds by means of alryl halides, alcohols.alkenes, acyl halides in the presence of Lewis acids... [Pg.131]

All these kinetic results can be accommodated by a general mechanism that incorporates the following fundamental components (1) complexation of the alkylating agent and the Lewis acid (2) electrophilic attack on the aromatic substrate to form the a-complex and (3) deprotonation. In many systems, there m be an ionization of the complex to yield a discrete carbocation. This step accounts for the fact that rearrangement of the alkyl group is frequently observed during Friedel-Crafts alkylation. [Pg.581]

Benzyl and allyl alcohols which can generate stabilized caibocations give Friedel-Crafts alkylation products with mild Lewis acid catalysts such as scandium triflate. ... [Pg.583]

Of the many methods which have been published so far for the substitution of existing crowns, probably the most straightforward are Friedel-Crafts alkylation or acylation reactions. Cygan, Biernat and Chadzynski have reported the successful di-t-butylation of dibenzo-24-crown-8 using t-butanol as alkylating agent s . The crown was heated at 100° for 4 h in the presence of excess t-butanol and 85% phosphoric acid. The product was obtained as a crystalline (mp 52—74°) solid in 93% yield. The alkylated crowns are presumably a mixture of isomers substituted once in each ring as illustrated in Eq. (3.14). [Pg.26]

An important difference between Friedel-Crafts alkylations and acylations is that acyl cations do not rearrange. The acyl group of the acyl chloride or acid anhydride is transfened to the benzene ring unchanged. The reason for this is that an acyl cation is so strongly stabilized by resonance that it is more stable than any ion that could conceivably arise from it by a hydride or alkyl group shift. [Pg.486]

Friedel-Crafts alkylation Alcohols in combination with acids serve as sources of carbocations. Attack of a carbocation on the electron-rich ring of a phenol brings about its alkylation. [Pg.1003]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

As catalysts Lewis acids such as AICI3, TiCU, SbFs, BF3, ZnCh or FeCl3 are used. Protic acids such as FI2SO4 or FIF are also used, especially for reaction with alkenes or alcohols. Recent developments include the use of acidic polymer resins, e.g. Nafion-Fl, as catalysts for Friedel-Crafts alkylations and the use of asymmetric catalysts. ... [Pg.123]

The methodology of a Lewis acid dissolved in an ionic liquid has been used for Friedel-Crafts alkylation reactions. Song [85] has reported that scandium(III) tri-flate in [BMIM][PFg] acts as an alkylation catalyst in the reaction between benzene and hex-l-ene (Scheme 5.1-55). [Pg.201]

Acidic chloroaluminate ionic liquids have already been described as both solvents and catalysts for reactions conventionally catalyzed by AICI3, such as catalytic Friedel-Crafts alkylation [35] or stoichiometric Friedel-Crafts acylation [36], in Section 5.1. In a very similar manner, Lewis-acidic transition metal complexes can form complex anions by reaction with organic halide salts. Seddon and co-workers, for example, patented a Friedel-Crafts acylation process based on an acidic chloro-ferrate ionic liquid catalyst [37]. [Pg.225]

Carboncations also form from an alkyl halide when a Lewis acid catalyst is used. Aluminum chloride is the commonly used Friedel-Crafts alkylation catalyst. Friedel-Crafts alkylation reactions have been reviewed by Roberts and Khalaf ... [Pg.263]

The food preservative BHT is prepared by Friedel-Crafts alkylation of p-methylphenol (p-cresol) wnth 2-methyIpropene in the presence of acid BHA is prepared similarly by alkylation of p-methoxyphenok... [Pg.629]

Mohanty et al. were the first to introduce pendent r-butyl groups in die polymer backbones. The resulting material was quite soluble in aprotic dipolar solvents.83 The PEEK precursors were prepared under a mild reaction condition at 170°C. The polymer precursor can be converted to PEEK in die presence of Lewis acid catalyst A1C13 via a retro Friedel-Crafts alkylation. Approximately 50% of die rerr-butyl substitutes were removed due to die insolubility of the product in die solvent used. Later, Risse et al. showed diat complete cleavage of f< rf-butyl substitutes could be achieved using a strong Lewis acid CF3SO3H as both die catalyst and the reaction medium (Scheme 6.15).84... [Pg.342]

It is well known in the literature that aluminum chloride, a strong Lewis acid, is a very effective catalyst in Friedel-Crafts alkylations with silicon... [Pg.147]

Vinylchlorosilanes react with aromatic compounds in the presence of Lewis acid to give the alkylation products 2-(chlorosilyl)ethylarenes. In the Friedel-Crafts alkylation of aromatic compounds, the reactivity of vinylchlorosilanes is slightly lower than that of allylchlorosilanes.Friedel-Crafts alkylation of benzene derivatives with vinylsilanes to give 2-(chlorosilyl)ethylarenes was first reported by the Andrianov group (Eq. (5))." The reactivity of vinylsilanes in the... [Pg.158]


See other pages where Friedel-Crafts alkylation acids is mentioned: [Pg.551]    [Pg.552]    [Pg.565]    [Pg.102]    [Pg.891]    [Pg.956]    [Pg.123]    [Pg.724]    [Pg.102]    [Pg.19]    [Pg.712]    [Pg.171]    [Pg.145]    [Pg.146]    [Pg.156]   
See also in sourсe #XX -- [ Pg.708 ]




SEARCH



Acid catalyzed, addition Friedel-Crafts alkylation

Friedel Crafts alkylation

Friedel-Crafts alkylation Bronsted acids

Friedel-Crafts alkylations

Lewis acid catalysis Friedel-Crafts alkylation

Phosphoric acid Friedel-Crafts alkylation

Phosphoric acid derivatives Friedel-Crafts alkylation

Phosphoric acids, enantioselection Friedel-Crafts alkylation

Solid acids Friedel-Crafts alkylations

© 2024 chempedia.info