Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friction plastic deformation

A number of friction studies have been carried out on organic polymers in recent years. Coefficients of friction are for the most part in the normal range, with values about as expected from Eq. XII-5. The detailed results show some serious complications, however. First, n is very dependent on load, as illustrated in Fig. XlI-5, for a copolymer of hexafluoroethylene and hexafluoropropylene [31], and evidently the area of contact is determined more by elastic than by plastic deformation. The difference between static and kinetic coefficients of friction was attributed to transfer of an oriented film of polymer to the steel rider during sliding and to low adhesion between this film and the polymer surface. Tetrafluoroethylene (Telfon) has a low coefficient of friction, around 0.1, and in a detailed study, this lower coefficient and other differences were attributed to the rather smooth molecular profile of the Teflon molecule [32]. [Pg.441]

Let US now look at how this contact geometry influences friction. If you attempt to slide one of the surfaces over the other, a shear stress fj/a appears at the asperities. The shear stress is greatest where the cross-sectional area of asperities is least, that is, at or very near the contact plane. Now, the intense plastic deformation in the regions of contact presses the asperity tips together so well that there is atom-to-atom contact across the junction. The junction, therefore, can withstand a shear stress as large as k approximately, where k is the shear-yield strength of the material (Chapter 11). [Pg.243]

A metal bar of width w is compressed between two hard anvils as shown in Fig. Al.l. The third dimension of the bar, L, is much greater than zu. Plastic deformation takes place as a result of shearing along planes, defined by the dashed lines in the figure, at a shear stress k. Find an upper bound for the load F when (a) there is no friction between anvils and bar, and (b) there is sufficient friction to effectively weld the anvils to the bar. Show that the solution to case (b) satisfies the general formula... [Pg.281]

In static friction, the change of state from rest to motion is caused by the same mechanism as the stick-slip transition. The creation of static friction is in fact a matter of choice of system state for a more stable and favorable energy condition, and thus does not have to be interpreted in terms of plastic deformation and shear of materials at adhesive junctions. [Pg.185]

The indentation process is driven by the applied load, and resisted by two principal factors the resistance of the specimen to plastic deformation (and elastic deformation) plus the frictional resistance at the indenter/specimen interface. The ratio of these resistances changes with the size of the indentation because the plastic resistance is proportional to the volume of the indentation, while the frictional resistance is proportional to the surface area of the indentation. Therefore, the ratio varies as the reciprocal indentation size. This interpretation has been tested and found to be valid by Bystrzycki and Varin (1993). [Pg.20]

A traditional explanation of solid friction, which is mainly employed in engineering sciences, is based on plastic deformation.12 Typical surfaces are rough on microscopic length scales, as indicated in Figure 3. As a result, intimate mechanical contact between macroscopic solids occurs only at isolated points, typically at a small fraction of the apparent area of contact. [Pg.72]

The net area of this intimate contact is called the real area of contact Areai. It is assumed that plastic flow occurs at most microscopic points of contact, so that the normal, local pressures correspond to the hardness aj, of the softer of the two materials that are in contact. The (maximum) shear pressure is given by the yield strength cry of the same material. The net load L and the net shear force Fs follow by integrating aj, and cry over the real area of contact Areai. That is, L = cs, Arca and Fs = ayAreai. Hence, the plastic deformation scenario results in the following (static) friction coefficient ... [Pg.73]

Based on the discussion in earlier sections of this chapter, one may expect atomically flat incommensurate surfaces to be superlubric. Indeed the first suggestion that ultra-low friction may be possible was based on simulations of copper surfaces.6,7 Furthermore, the simulations of Ni(100)/(100) interfaces discussed in the previous section showed very low friction when the surfaces were atomically flat and misoriented (see the data for the atomically flat system between 30° and 60° in Figure 21). In general, however, it is reasonable to assume that bare metals are not good candidates for superlubric materials because they are vulnerable to a variety of energy dissipation mechanisms such as dislocation formation, plastic deformation, and wear. [Pg.113]

Impurities, such as grit, shreds of cotton, even in small quantities, sensitize an expl to frictional impact. That is why utmost cleanliness must be exercised in the preparation of expls. There are differences in the sensitivity of azides to mechanical and thermal influences. They have been correlated with the structure of the outer electronic orbits, the electrochemical potential, the ionization energy and the arrangement of atoms within the crystal. Functions of the polarizability of the cation are the plastic deformability of the crystals, and their surface properties. The nature of cation in an azide, such as Pb(Nj)2, has little effect on the energy released by the decomposition, which is vested in the N ion. The high heat of formation of the N2 molecule accounts... [Pg.514]

For all materials, the adhesive mechanism and the plastic deformation should be the main processes. During testing, the variation in friction coefficient values could be influenced by the specific AM behavior. Since AM corresponds to the crosslink density of a composite, for a qualitative assessment it can be concluded that the crosslink density decreases with increasing absorbed dose. PTFE500kGy-EPDM showed much lower AM and f90 values. It can be inferred that the state of cure is strongly dependent on the irradiation dose absorbed by the PTFE powder. [Pg.284]

How can the actual contact surface be measured One possibility is to measure the electrical resistance between two conductors and calculate the contact area from the measured resistance and the specific resistivity of the materials. Another possibility is to use an IR sensitive microscope to measure hot spots of a transparent solid that is in contact with a hot surface. With these methods it was found that the friction force is, in fact, proportional to the actual contact area. This implies that the true contact area must increase linearly with load. To illustrate how this is possible, we consider two extreme cases. In the first case, purely elastic deformation is considered. In the second case, we assume plastic deformation of the microcontacts. [Pg.225]

Values from tables of friction coefficients always have to be used with caution, since the experimental results not only depend on the materials but also on surface preparation, which is often not well characterized. In the case of plastic deformation, the static coefficient of friction may depend on contact time. Creeping motion due to thermally activated processes leads to an increase in the true contact area and hence the friction coefficient with time. This can often be described by a logarithmic time dependence... [Pg.232]

The quasi-static acquisition and interpretation of the force-distance curves is straightforward for elastic materials. The information is generally incomplete and less reproducible for polymers which demonstrate viscoelastic contact, plastic deformation, and ploughing type friction. Moreover, they exhibit a wide spectrum of relaxation times from 105 to 109 Hz [121]. [Pg.83]

During a collision, the colliding solids undergo both elastic and inelastic (or plastic) deformations. These deformations are caused by the changes of stresses and strains, which depend on the material properties of the solids and the applied external forces. Theories on the elastic deformations of two elastic bodies in contact are introduced in the literature utilizing Hertzian theory for frictionless contact and Mindlin s approach for frictional contact. As for inelastic deformations, few theories have been developed and the available ones are usually based on elastic contact theories. Hence, an introduction to the theories on elastic contact of solids is essential. [Pg.49]


See other pages where Friction plastic deformation is mentioned: [Pg.516]    [Pg.516]    [Pg.435]    [Pg.182]    [Pg.273]    [Pg.125]    [Pg.830]    [Pg.1332]    [Pg.23]    [Pg.25]    [Pg.25]    [Pg.172]    [Pg.182]    [Pg.250]    [Pg.262]    [Pg.15]    [Pg.200]    [Pg.529]    [Pg.69]    [Pg.70]    [Pg.72]    [Pg.73]    [Pg.73]    [Pg.111]    [Pg.112]    [Pg.307]    [Pg.692]    [Pg.220]    [Pg.273]    [Pg.82]    [Pg.110]    [Pg.133]    [Pg.164]    [Pg.166]    [Pg.170]   
See also in sourсe #XX -- [ Pg.449 ]




SEARCH



Deformability plastic

Deformation frictional

Deformation plasticity

Deformed plastics

Plastic deformation

Plastic deformation friction mechanics

Plastic deformity

© 2024 chempedia.info