Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Frequency interfaces

The echo height F/B of the expression (1) is changed that the wave length X becomes shorter, the frequency becomes increaser and the reflective coefficient of sound pressure in the bonding interface becomes higher. [Pg.838]

Optical second-harmonic generation (SHG) has recently emerged as a powerful surface probe [95, 96]. Second harmonic generation has long been used to produce frequency doublers from noncentrosymmetric crystals. As a surface probe, SHG can be caused by the break in symmetry at the interface between two centrosymmetric media. A high-powered pulsed laser is focused at an angle of incidence from 30 to 70° onto the sample at a power density of 10 to 10 W/cm. The harmonic is observed in reflection or transmission at twice the incident frequency with a photomultiplier tube. [Pg.311]

SHG Optical second-harmonic generation [95, 96] A high-powered pulsed laser generates frequency-doubled response due to the asymmetry of the interface Adsorption and surface coverage rapid surface changes... [Pg.318]

Shen Y R 1998 Sum frequency generation for vibrational spectroscopy applications to water interfaces and films of water and ice Solid State Commun. 108 399... [Pg.320]

In this section we discuss the frequency spectrum of excitations on a liquid surface. Wliile we used linearized equations of hydrodynamics in tire last section to obtain the density fluctuation spectrum in the bulk of a homogeneous fluid, here we use linear fluctuating hydrodynamics to derive an equation of motion for the instantaneous position of the interface. We tlien use this equation to analyse the fluctuations in such an inliomogeneous system, around equilibrium and around a NESS characterized by a small temperature gradient. More details can be found in [9, 10]. [Pg.725]

Surface waves at an interface between two innniscible fluids involve effects due to gravity (g) and surface tension (a) forces. (In this section, o denotes surface tension and a denotes the stress tensor. The two should not be coiifiised with one another.) In a hydrodynamic approach, the interface is treated as a sharp boundary and the two bulk phases as incompressible. The Navier-Stokes equations for the two bulk phases (balance of macroscopic forces is the mgredient) along with the boundary condition at the interface (surface tension o enters here) are solved for possible hamionic oscillations of the interface of the fomi, exp [-(iu + s)t + i V-.r], where m is the frequency, is the damping coefficient, s tlie 2-d wavevector of the periodic oscillation and. ra 2-d vector parallel to the surface. For a liquid-vapour interface which we consider, away from the critical point, the vapour density is negligible compared to the liquid density and one obtains the hydrodynamic dispersion relation for surface waves + s>tf. The temi gq in the dispersion relation arises from... [Pg.725]

Figure Bl.5.5 Schematic representation of the phenomenological model for second-order nonlinear optical effects at the interface between two centrosynnnetric media. Input waves at frequencies or and m2, witii corresponding wavevectors /Cj(co and k (o 2), are approaching the interface from medium 1. Nonlinear radiation at frequency co is emitted in directions described by the wavevectors /c Cco ) (reflected in medium 1) and /c2(k>3) (transmitted in medium 2). The linear dielectric constants of media 1, 2 and the interface are denoted by E2, and s, respectively. The figure shows the vz-plane (the plane of incidence) withz increasing from top to bottom and z = 0 defining the interface. Figure Bl.5.5 Schematic representation of the phenomenological model for second-order nonlinear optical effects at the interface between two centrosynnnetric media. Input waves at frequencies or and m2, witii corresponding wavevectors /Cj(co and k (o 2), are approaching the interface from medium 1. Nonlinear radiation at frequency co is emitted in directions described by the wavevectors /c Cco ) (reflected in medium 1) and /c2(k>3) (transmitted in medium 2). The linear dielectric constants of media 1, 2 and the interface are denoted by E2, and s, respectively. The figure shows the vz-plane (the plane of incidence) withz increasing from top to bottom and z = 0 defining the interface.
Figure Bl.5.15 SFG spectrum for the water/air interface at 40 °C using the ssp polarization combination (s-, s- and p-polarized sum-frequency signal, visible input and infrared input beams, respectively). The peaks correspond to OH stretching modes. (After [ ].)... Figure Bl.5.15 SFG spectrum for the water/air interface at 40 °C using the ssp polarization combination (s-, s- and p-polarized sum-frequency signal, visible input and infrared input beams, respectively). The peaks correspond to OH stretching modes. (After [ ].)...
Eisenthal K B 1992 Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation Ann. Rev. Phys. Chem. 43 627-61... [Pg.1300]

Bain C D 1995 Sum-frequency vibrational spectroscopy of the solid-liquid interface J. Chem. See. Faraday Trans. 91 1281-96... [Pg.1300]

Eisenthal K B 1996 Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy Chem. Rev. 96 1343-60... [Pg.1300]

Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces. Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces.
Introducing the complex notation enables the impedance relationships to be presented as Argand diagrams in both Cartesian and polar co-ordinates (r,rp). The fomier leads to the Nyquist impedance spectrum, where the real impedance is plotted against the imaginary and the latter to the Bode spectrum, where both the modulus of impedance, r, and the phase angle are plotted as a fiinction of the frequency. In AC impedance tire cell is essentially replaced by a suitable model system in which the properties of the interface and the electrolyte are represented by appropriate electrical analogues and the impedance of the cell is then measured over a wide... [Pg.1944]

Most of the experimental information concerning copolymer microstructure has been obtained by physical methods based on modern instrumental methods. Techniques such as ultraviolet (UV), visible, and infrared (IR) spectroscopy, NMR spectroscopy, and mass spectroscopy have all been used to good advantage in this type of research. Advances in instrumentation and computer interfacing combine to make these physical methods particularly suitable to answer the question we pose With what frequency do particular sequences of repeat units occur in a copolymer. [Pg.460]

The clad plate is x-rayed perpendicular from the steel side and the film contacts the aluminum. Radiography reveals the wavy interface of explosion-welded, aluminum-clad steel as uniformly spaced, light and dark lines with a frequency of one to three lines per centimeter. The waves characterize a strong and ductile transition joint and represent the acceptable condition. The clad is interpreted to be nonbonded when the x-ray shows complete loss of the wavy interface (see X-ray technology). [Pg.148]

Fig. 7. (a) Simple battery circuit diagram where represents the capacitance of the electrical double layer at the electrode—solution interface, W depicts the Warburg impedance for diffusion processes, and R is internal resistance and (b) the corresponding Argand diagram of the behavior of impedance with frequency, for an idealized battery system, where the characteristic behavior of A, ohmic B, activation and C, diffusion or concentration (Warburg... [Pg.514]

At lower frequencies, orientational polarization may occur if the glass contains permanent ionic or molecular dipoles, such as H2O or an Si—OH group, that can rotate or oscillate in the presence of an appHed electric field. Another source of orientational polarization at even lower frequencies is the oscillatory movement of mobile ions such as Na". The higher the amount of alkaH oxide in the glass, the higher the dielectric constant. When the movement of mobile charge carriers is obstmcted by a barrier, the accumulation of carriers at the interface leads to interfacial polarization. Interfacial polarization can occur in phase-separated glasses if the phases have different dielectric constants. [Pg.333]


See other pages where Frequency interfaces is mentioned: [Pg.116]    [Pg.983]    [Pg.236]    [Pg.130]    [Pg.116]    [Pg.983]    [Pg.236]    [Pg.130]    [Pg.128]    [Pg.129]    [Pg.714]    [Pg.835]    [Pg.729]    [Pg.1243]    [Pg.1265]    [Pg.1294]    [Pg.1303]    [Pg.1733]    [Pg.1787]    [Pg.1788]    [Pg.1788]    [Pg.1944]    [Pg.2747]    [Pg.328]    [Pg.331]    [Pg.88]    [Pg.149]    [Pg.666]    [Pg.269]    [Pg.345]    [Pg.388]    [Pg.542]    [Pg.332]    [Pg.147]    [Pg.23]    [Pg.119]    [Pg.1827]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



© 2024 chempedia.info