Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Frequency description

The above description is obviously an extension of the low frequency description, but it can also be connected to the high frequency limit. Consider the case in which a) 1 IT, i.e., there are many cycles of the field, and ES — ER rf, the static tuning field is near resonance compared to the rf field amplitude. For a large transition probability the transition amplitudes of successive rf cycles must add constructively. This only happens when the phase difference over an rf cycle satisfies = 2jzN with N an integer. Using the energies of Eq. (15.35),... [Pg.331]

One interesting point about the Fourier synthesis and analysis equations is that while they have a similar form, one is a sum while the other is an integral. This is solely because periodic signals are composed of a integer number (possibly infinite) of discrete harmonics, necessarily enforcing a discrete frequency description. The waveform however, is a continuous function. As we shall see, there are several variations on these equations in which frequency can be continuous or time discrete. [Pg.274]

CARRA CARRA, for chemically activated reaction rate analysis, calculates apparent rate constants for multi-well, multi-channel systems based on QRRK theory. It uses either the MSC (CAR-RA MSC) or the steady-state ME (CARRA ME) approach. The original concept was based on a single frequency representation of the active modes of each isomer [35,36]. Later, the code was updated to handle three representative frequencies. Descriptions of these earlier versions as well as applications can be found in Refs. [7,37]. CARRA is a modihed version of these older codes, which is currently still under development [38]. [Pg.137]

Sensor Mode Frequency Description and Function of Sensor Element... [Pg.201]

Standard procedures that are used for testing of construction materials are based on square pulse actions or their various combinations. For example, small cyclic loads are used for forecast of durability and failure of materials. It is possible to apply analytical description of various types of loads as IN actions in time and frequency domains and use them as analytical deterministic models. Noise N(t) action as a rule is represented by stochastic model. [Pg.189]

A more detailed description of the interaction accounts for the variation of the polarizability of the material with frequency. Then, the Hamaker constant across a vacuum becomes... [Pg.233]

In absorption spectroscopy, the attenuation of light as it passes tln-ough a sample is measured as a function of wavelength. The attenuation is due to rovibrational or electronic transitions occurring in the sample. Mapping out the attenuation versus photon frequency gives a description of the molecule or molecules responsible for the absorption. The attenuation at a particular frequency follows the Beer-Lambert law,... [Pg.805]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

Before presenting the quantum mechanical description of a hannonic oscillator and selection rules, it is worthwhile presenting the energy level expressions that the reader is probably already familiar with. A vibrational mode v, witii an equilibrium frequency of (in wavenumbers) has energy levels (also in... [Pg.1152]

Lin S H and Villaeys A A 1994 Theoretical description of steady-state sum-frequency generation in molecular absorbates Phys. Rev. A 50 5134-44... [Pg.1303]

Muns ENDOR mvolves observation of the stimulated echo intensity as a fimction of the frequency of an RE Ti-pulse applied between tlie second and third MW pulse. In contrast to the Davies ENDOR experiment, the Mims-ENDOR sequence does not require selective MW pulses. For a detailed description of the polarization transfer in a Mims-type experiment the reader is referred to the literature [43]. Just as with three-pulse ESEEM, blind spots can occur in ENDOR spectra measured using Muns method. To avoid the possibility of missing lines it is therefore essential to repeat the experiment with different values of the pulse spacing Detection of the echo intensity as a fimction of the RE frequency and x yields a real two-dimensional experiment. An FT of the x-domain will yield cross-peaks in the 2D-FT-ENDOR spectrum which correlate different ENDOR transitions belonging to the same nucleus. One advantage of Mims ENDOR over Davies ENDOR is its larger echo intensity because more spins due to the nonselective excitation are involved in the fomiation of the echo. [Pg.1581]

This is the description of NMR chemical exchange in the time domain. Note that this equation and equation (B2.4.11)) are Fourier transfomis of each other. The time-domain and frequency-domain pictures are always related in this way. [Pg.2096]

Binsch [6] provided the standard way of calculating these lineshapes in the frequency domain, and implemented it in the program DNMR3 [7], Fonnally, it is the same as the matrix description given in section (B2.4.2.3). The calculation of the matrices L, R and K is more complex for a coupled spin system, but that should not interfere witii the understanding of how the method works. This work will be discussed later, but first the time-domain approach will be developed. [Pg.2099]

MM2 was, according the web site of the authors, released as MM2 87). The various MM2 flavors are superseded by MM3, with significant improvements in the functional form [10]. It was also extended to handle amides, polypeptides, and proteins [11]. The last release of this series was MM3(%). Further improvements followed by starting the MM4 series, which focuses on hydrocarbons [12], on the description of hyperconjugative effects on carbon-carbon bond lengths [13], and on conjugated hydrocarbons [14] with special emphasis on vibrational frequencies [15]. For applications of MM2 and MM3 in inorganic systems, readers are referred to the literature [16-19]. [Pg.350]

The vibrational states of a molecule are observed experimentally via infrared and Raman spectroscopy. These techniques can help to determine molecular structure and environment. In order to gain such useful information, it is necessary to determine what vibrational motion corresponds to each peak in the spectrum. This assignment can be quite difficult due to the large number of closely spaced peaks possible even in fairly simple molecules. In order to aid in this assignment, many workers use computer simulations to calculate the vibrational frequencies of molecules. This chapter presents a brief description of the various computational techniques available. [Pg.92]

The most common description of relativistic quantum mechanics for Fermion systems, such as molecules, is the Dirac equation. The Dirac equation is a one-electron equation. In formulating this equation, the terms that arise are intrinsic electron spin, mass defect, spin couplings, and the Darwin term. The Darwin term can be viewed as the effect of an electron making a high-frequency oscillation around its mean position. [Pg.262]

A fuller description of the microchannel plate is presented in Chapter 30. Briefly, ions traveling down the flight tube of a TOF instrument are separated in time. As each m/z collection of ions arrives at the collector, it may be spread over a small area of space (Figure 27.3). Therefore, so as not to lose ions, rather than have a single-point ion collector, the collector is composed of an array of miniature electron multipliers (microchannels), which are all connected to one electrified plate, so, no matter where an ion of any one m/z value hits the front of the array, its arrival is recorded. The microchannel plate collector could be crudely compared to a satellite TV dish receiver in that radio waves of the same frequency but spread over an area are all collected and recorded at the same time of course, the multichannel plate records the arrival of ions not radio waves. [Pg.197]

The kinetic nature of the glass transition should be clear from the last chapter, where we first identified this transition by a change in the mechanical properties of a sample in very rapid deformations. In that chapter we concluded that molecular motion could simply not keep up with these high-frequency deformations. The complementarity between time and temperature enters the picture in this way. At lower temperatures the motion of molecules becomes more sluggish and equivalent effects on mechanical properties are produced by cooling as by frequency variations. We shall return to an examination of this time-temperature equivalency in Sec. 4.10. First, however, it will be profitable to consider the possibility of a thermodynamic description of the transition which occurs at Tg. [Pg.244]

Nature In monitoring a moving threadhne, one criterion of quality would be the frequency of broken filaments. These can be identified as they occur through the threadhne by a broken-filament detector mounted adjacent to the threadhne. In this context, the random occurrences of broken filaments can be modeled by the Poisson distribution. This is called a Poisson process and corresponds to a probabilistic description of the frequency of defects or, in general, what are called arrivals at points on a continuous line or in time. Other examples include ... [Pg.489]


See other pages where Frequency description is mentioned: [Pg.125]    [Pg.126]    [Pg.204]    [Pg.19]    [Pg.405]    [Pg.413]    [Pg.405]    [Pg.413]    [Pg.125]    [Pg.126]    [Pg.204]    [Pg.19]    [Pg.405]    [Pg.413]    [Pg.405]    [Pg.413]    [Pg.189]    [Pg.463]    [Pg.57]    [Pg.852]    [Pg.1151]    [Pg.1152]    [Pg.1325]    [Pg.2060]    [Pg.2096]    [Pg.3044]    [Pg.246]    [Pg.93]    [Pg.249]    [Pg.470]    [Pg.113]    [Pg.54]    [Pg.54]    [Pg.347]    [Pg.340]    [Pg.401]    [Pg.454]    [Pg.1823]   
See also in sourсe #XX -- [ Pg.478 ]




SEARCH



Description frequency distribution

Radio frequency magnetron sputtering process description

© 2024 chempedia.info