Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals vinyl groups

The parameter q gives the probability that the active end of the propagating chain adds another monomer to the growing chain. For free-radical vinyl polymerizations, q attains values close to 1 (usual values are larger than 0.99). However, for some nonliving anionic or cationic polymerizations, such as the cationic polymerization of epoxy groups, values of q may be lower. [Pg.116]

Copolymerization of alkylene oxides is complicated because the results depend on the initiator system the solvent, if present and the terminal or end group (and sometimes the penultimate group as well). The simplifying factor is that the copolymerization kinetics can be characterized by a single relative reactivity rate ratio (121) rather than the two relative reactivity ratios required for free-radical, vinyl copolymerization (122). There are very few reported instances of free-radical copolymerization of oxirane (123). [Pg.82]

For most vinyl polymers, head-to-tail addition is the dominant mode of addition. Variations from this generalization become more common for polymerizations which are carried out at higher temperatures. Head-to-head addition is also somewhat more abundant in the case of halogenated monomers such as vinyl chloride. The preponderance of head-to-tail additions is understood to arise from a combination of resonance and steric effects. In many cases the ionic or free-radical reaction center occurs at the substituted carbon due to the possibility of resonance stabilization or electron delocalization through the substituent group. Head-to-tail attachment is also sterically favored, since the substituent groups on successive repeat units are separated by a methylene... [Pg.23]

It might be noted that most (not all) alkenes are polymerizable by the chain mechanism involving free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-radical mechanism. Carbonyl groups and some carbon-carbon double bonds are polymerized by ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic intermediate but not a cationic one, A -vinyl pyrrolidones by cationic but not anionic intermediates, and halogenated olefins by neither ionic species. In all of these cases free-radical polymerization is possible. [Pg.349]

Etherification and esterification of hydroxyl groups produce derivatives, some of which are produced commercially. Derivatives may also be obtained by graft polymerization wherein free radicals, initiated on the starch backbone by ceric ion or irradiation, react with monomers such as vinyl or acrylyl derivatives. A number of such copolymers have been prepared and evaluated in extmsion processing (49). A starch—acrylonitrile graft copolymer has been patented (50) which rapidly absorbs many hundred times its weight in water and has potential appHcations in disposable diapers and medical suppHes. [Pg.342]

The reversible addition of sodium bisulfite to carbonyl groups is used ia the purification of aldehydes. Sodium bisulfite also is employed ia polymer and synthetic fiber manufacture ia several ways. In free-radical polymerization of vinyl and diene monomers, sodium bisulfite or metabisulfite is frequentiy used as the reduciag component of a so-called redox initiator (see Initiators). Sodium bisulfite is also used as a color preventative and is added as such during the coagulation of crepe mbber. [Pg.150]

The nmr spectmm of PVAc iu carbon tetrachloride solution at 110°C shows absorptions at 4.86 5 (pentad) of the methine proton 1.78 5 (triad) of the methylene group and 1.98 5, 1.96 5, and 1.94 5, which are the resonances of the acetate methyls iu isotactic, heterotactic, and syndiotactic triads, respectively. Poly(vinyl acetate) produced by normal free-radical polymerization is completely atactic and noncrystalline. The nmr spectra of ethylene vinyl acetate copolymers have also been obtained (33). The ir spectra of the copolymers of vinyl acetate differ from that of the homopolymer depending on the identity of the comonomers and their proportion. [Pg.463]

A waterborne system for container coatings was developed based on a graft copolymerization of an advanced epoxy resin and an acryHc (52). The acryhc-vinyl monomers are grafted onto preformed epoxy resins in the presence of a free-radical initiator grafting occurs mainly at the methylene group of the aHphatic backbone on the epoxy resin. The polymeric product is a mixture of methacrylic acid—styrene copolymer, soHd epoxy resin, and graft copolymer of the unsaturated monomers onto the epoxy resin backbone. It is dispersible in water upon neutralization with an amine before cure with an amino—formaldehyde resin. [Pg.370]

The chemical structure of SBR is given in Fig. 4. Because butadiene has two carbon-carbon double bonds, 1,2 and 1,4 addition reactions can be produced. The 1,2 addition provides a pendant vinyl group on the copolymer chain, leading to an increase in Tg. The 1,4 addition may occur in cis or trans. In free radical emulsion polymerization, the cis to trans ratio can be varied by changing the temperature (at low temperature, the trans form is favoured), and about 20% of the vinyl pendant group remains in both isomers. In solution polymerization the pendant vinyl group can be varied from 10 to 90% by choosing the adequate solvent and catalyst system. [Pg.586]

Free radical polymerization is a key method used by the polymer industry to produce a wide range of polymers [37]. It is used for the addition polymerization of vinyl monomers including styrene, vinyl acetate, tetrafluoroethylene, methacrylates, acrylates, (meth)acrylonitrile, (meth)acrylamides, etc. in bulk, solution, and aqueous processes. The chemistry is easy to exploit and is tolerant to many functional groups and impurities. [Pg.324]

The free radical initiators are more suitable for the monomers having electron-withdrawing substituents directed to the ethylene nucleus. The monomers having electron-supplying groups can be polymerized better with the ionic initiators. The water solubility of the monomer is another important consideration. Highly water-soluble (relatively polar) monomers are not suitable for the emulsion polymerization process since most of the monomer polymerizes within the continuous medium, The detailed emulsion polymerization procedures for various monomers, including styrene [59-64], butadiene [61,63,64], vinyl acetate [62,64], vinyl chloride [62,64,65], alkyl acrylates [61-63,65], alkyl methacrylates [62,64], chloroprene [63], and isoprene [61,63] are available in the literature. [Pg.198]


See other pages where Free radicals vinyl groups is mentioned: [Pg.474]    [Pg.273]    [Pg.22]    [Pg.575]    [Pg.97]    [Pg.250]    [Pg.75]    [Pg.273]    [Pg.33]    [Pg.162]    [Pg.158]    [Pg.298]    [Pg.223]    [Pg.13]    [Pg.120]    [Pg.412]    [Pg.58]    [Pg.282]    [Pg.374]    [Pg.400]    [Pg.320]    [Pg.123]    [Pg.127]    [Pg.378]    [Pg.84]    [Pg.323]    [Pg.53]    [Pg.260]    [Pg.202]    [Pg.227]    [Pg.539]    [Pg.190]    [Pg.140]    [Pg.719]    [Pg.753]    [Pg.1105]    [Pg.338]    [Pg.424]    [Pg.504]   
See also in sourсe #XX -- [ Pg.12 , Pg.680 ]




SEARCH



Free radicals vinyl

Radicals vinyl radical

Vinyl group

Vinyl radicals

Vinylic groups

© 2024 chempedia.info