Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution, free radical stability

This secondary carbon position offers the best combination of free radical stability and ability to approach the enzyme s reactive site. This addition product could be further transformed to yield 2-carboxy-substituted compounds (So and Young, 1999), derivatives that are subsequently used in pathways involving fatty acids. [Pg.731]

Resonance effects, on the other hand, can significantly affect the regiochem-istry of the cyclizadon. Resonance delocalization of the unpaired electron of a free radical stabilizes that radical. This is why the allyl radical is much more stable than the //-propyl radical. Thus, if a double bond is substituted with a group capable of providing resonance stabilization to a free radical, it undergoes free-radical addition much more readily than a double bond which cannot provide such resonance stabilization. [Pg.286]

Lythgoe first observed that certain groups which form stabilized free radicals when substituted fl to the thionocarbonyl derivative of a hydroxyl moiety undergo smooth elimination upon treatment with trialkyltin radicals to give the olefin.155 This important observation charted a course for a series of... [Pg.131]

In a simile manner, ring-opening polymerizations of five-membered acetals are helped by free-radical stabilizing substituents. Complete ring-opening polymerizations take place with phenyl-substituted compounds ... [Pg.213]

This propagation reaction is facilitated by increasing resonance stabilization of the newly formed free radical. The resonance stabilization of free radicals of the type CH2CHR increases with increasing conjugation between the substituent R and the unpaired electron. In agreement with this, it has been found that the resonance stabilization of free radicals from substituted olefins, CH2=CHR, decreases in the order of the substituents, R,... [Pg.209]

For most vinyl polymers, head-to-tail addition is the dominant mode of addition. Variations from this generalization become more common for polymerizations which are carried out at higher temperatures. Head-to-head addition is also somewhat more abundant in the case of halogenated monomers such as vinyl chloride. The preponderance of head-to-tail additions is understood to arise from a combination of resonance and steric effects. In many cases the ionic or free-radical reaction center occurs at the substituted carbon due to the possibility of resonance stabilization or electron delocalization through the substituent group. Head-to-tail attachment is also sterically favored, since the substituent groups on successive repeat units are separated by a methylene... [Pg.23]

Reaction Mechanism. High temperature vapor-phase chlorination of propylene [115-07-17 is a free-radical mechanism in which substitution of an allyhc hydrogen is favored over addition of chlorine to the double bond. Abstraction of allyhc hydrogen is especially favored since the allyl radical intermediate is stabilized by resonance between two symmetrical stmctures, both of which lead to allyl chloride. [Pg.33]

Radical chlorination reactions show a substantial polar effect. Positions substituted by electron-withdrawing groups are relatively unreactive toward chlorination, even though the substituents may be potentially capable of stabilizing the free-radical intermediate " ... [Pg.703]

The first three chapters discuss fundamental bonding theory, stereochemistry, and conformation, respectively. Chapter 4 discusses the means of study and description of reaction mechanisms. Chapter 9 focuses on aromaticity and aromatic stabilization and can be used at an earlier stage of a course if an instructor desires to do so. The other chapters discuss specific mechanistic types, including nucleophilic substitution, polar additions and eliminations, carbon acids and enolates, carbonyl chemistry, aromatic substitution, concerted reactions, free-radical reactions, and photochemistry. [Pg.830]

It is pointed out that the dissociation of certain substituted ethanes into free radicals is due not to weakness of the carbon-carbon bond in the ethane but to the stabilization of the free radicals resulting from resonance among the structures in which the unpaired electron is located on the... [Pg.116]

When double bonds are reduced by lithium in ammonia or amines, the mechanism is similar to that of the Birch reduction (15-14). ° The reduction with trifluoro-acetic acid and EtsSiH has an ionic mechanism, with H coming in from the acid and H from the silane. In accord with this mechanism, the reaction can be applied only to those alkenes that when protonated can form a tertiary carbocation or one stabilized in some other way (e.g., by a OR substitution). It has been shown, by the detection of CIDNP, that reduction of a-methylstyrene by hydridopenta-carbonylmanganese(I) HMn(CO)5 involves free-radical addition. ... [Pg.1008]

II), and its formation therefore is more probable. If the substituent X possesses unsaturation conjugated with the free radical carbon, as for example when X is phenyl, resonance stabilization may be fairly large. The addition product (I) in this case is a substituted benzyl radical. Comparison of the C—I bond strengths in methyl iodide and in benzyl iodide, and a similar comparison of the C—H bond strengths in methane and toluene, indicate that a benzyl radical of type (I) is favored by resonance stabilization in the amount of 20 to 25 kcal. [Pg.231]

In addition to the stabilization by suitable substituents and the absence of other termination reactions than recombination, it is the strength of the bond formed in the dimerization which is a necessary cofactor for the observation of free radicals by esr spectroscopy. The stability of nitroxides [4] or hydrazyls [5] (Forrester et al., 1968) derives not only from their merostabilized or captodative character but also from a weak N-N bond in the dimer. The same should be the case for captodative-substituted aminyls... [Pg.146]

The study of substituted allyl radicals (Sustmann and Brandes, 1976 Sustmann and Trill, 1974 Sustmann et al., 1972, 1977), where pronounced substituent effects were found as compared to the barrier in the parent system (Korth et al., 1981), initiated a study of the rotational barrier in a captodative-substituted allyl radical [32]/[33] (Korth et al., 1984). The concept behind these studies is derived from the stabilization of free radicals by delocalization of the unpaired spin (see, for instance, Walton, 1984). The... [Pg.159]

The reactions of free radicals with furan and its derivatives can give both addition and substitution products depending on the specific system (11-13). With 2-substituted furans, the attack takes place predominantly at C5 and leads, by additon, to the corresponding furyl radicals which must be viewed as relatively stabilized interemediates because of the dienic-aromatic character of the furan heterocycle. These premises are essential to the understanding of the varied responses of furan monomers to free-radical activation. [Pg.196]

At the same time, delocalization of unpaired spin in the free-radical product appears to be important for the course of the substitution reaction. For example hydrogen shift in sabinene radical cation 39a leads to a conjugated system (40 ) nucleophilic attack on l-aryl-2-alkylcyclopropane radical cations 43 or 47 produces benzylic radicals nucleophilic attack on 39a generates an allylic species and attack on the tricyclane radical cations 55 or 56 forms tertiary radicals. Apparently, formation of delocalized or otherwise stabilized free radicals is preferred. [Pg.297]

Concerning steric factors, 43 is attacked in the most hindered position ( inverse effect of substitution ) likewise, 39 is attacked at the most hindered carbon. Obviously, the transition states for the formation of 44 or 50 show limited sensitivity to the degree of substitution, and the relief of ring strain is a more significant factor than the steric hindrance in the transition state. On the other hand, steric factors are important in systems such as P-phellandrene radical cation 40 which is attacked at the xo-methylene carbon (most easily accessible), or the tricyclane radical cation 56 which is attacked at the less hindered 3° carbon further removed from the dimethyl-substituted bridge (approach a). Both reactions also benefit Irom the formation of the most highly substituted, hyperconjugatively stabilized free radicals. [Pg.297]


See other pages where Substitution, free radical stability is mentioned: [Pg.14]    [Pg.14]    [Pg.164]    [Pg.700]    [Pg.158]    [Pg.181]    [Pg.438]    [Pg.140]    [Pg.57]    [Pg.122]    [Pg.126]    [Pg.162]    [Pg.986]    [Pg.73]    [Pg.350]    [Pg.30]    [Pg.34]    [Pg.11]    [Pg.137]    [Pg.155]    [Pg.156]    [Pg.171]    [Pg.172]    [Pg.376]    [Pg.129]    [Pg.197]    [Pg.199]    [Pg.224]   
See also in sourсe #XX -- [ Pg.207 ]




SEARCH



Free radical stabilization

Free radical substitution

Free radicals stability

Free radicals substituted

Free stabilization

Radicals 3-substituted

Radicals stability

Stability substitution

Stabilized free radicals

Substitution radical

© 2024 chempedia.info