Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stable free radical polymerization styrene-acrylonitrile

Random copolymers of styrene/isoprene and styrene/acrylonitrile were prepared by the stable free radical polymerization process. The molecular weight of the polymers increased as a function of conversion, as expected for a living radical polymerization. The microstructure of the copolymers and reactivity ratios of the monomers were found to be very similar to what would be obtained for a conventional free radical polymerization. The propagating living radical chain reacts similarly to a conventionally propagating chain. [Pg.28]

Random copolymers of styrene/isoprene and styrene/acrylonitrile have been prepared by stable free radical polymerization. By varying the comonomer mole fractions over the range 0.1-0.9 in low conversion SFRP reactions it has been demonstrated that the incorporation of the two monomers in the copolymer is analogous to that found in conventional free radical copolymerizations. The composition and microstructure of random copolymers prepared by SFRP are not significantly different from those of copolymers synthesized conventionally. These two observations support the conclusion that the presence of nitroxide in the SFR process does not influence the monomer reactivity ratios or the stereoselectivity of the propagating radical chain. Rather, the SFR propagation mechanism is essentially the same as that of the conventional free radical copolymerization process. [Pg.37]

A major difference between cationic and free-radical polymerization is that the cationic process needs a monomer that forms a relatively stable carbocation when it reacts with the cationic end of the growing chain. Some monomers form more stable intermediates than others. For example, styrene and isobutylene undergo cationic polymerization easily, while ethylene and acrylonitrile do not polymerize well under these conditions. Figure 26-2 compares the intermediates involved in these cationic polymerizations. [Pg.1227]

If the nitroxide does leave the vicinity of the propagating chain end then the reactivity ratios for the radicals should also be the same as in conventional radical polymerizations. However, if the capping and uncapping rates for the two monomers are different this would lead to different concentrations of the two types of propagating chain ends relative to what would be present in a conventional radical polymerization. To address this issue, stable free radical copolymerizations of styrene-isoprene and styrene-acrylonitrile were studied in detail to compare the low conversion copolymer compositions to those prepared by conventional radical polymerization. The microstructure of the polymers was also examined. [Pg.29]

Jaisinghani and Ray (40) also predicted the existence of three steady states for the free-radical polymerization of methyl methacrylate under autothermal operation. As their analysis could only locate unstable limit cycles, they concluded that stable oscillations for this system were unlikely. However, they speculated that other monomer-initiator combinations could exhibit more interesting dynamic phenomena. Since at that time there had been no evidence of experimental work for this class of problems, their theoretical analysis provided the foundation for future experimental work aimed at validating the predicted phenomena. Later studies include the investigations of Balaraman et al. (43) for the continuous bulk copolymerization of styrene and acrylonitrile, and Kuchanov et al. (44) who demonstrated the existence of sustained oscillations for bulk copolymerization under non-isothermal conditions. Hamer, Akramov and Ray (45) were first to predict stable limit cycles for non-isothermal solution homopolymerization and copolymerization in a CSTR. Parameter space plots and dynamic simulations were presented for methyl methacrylate and vinyl acetate homopolymerization, as well as for their copolymerization. The copolymerization system exhibited a new bifurcation diagram observed for the first time where three Hopf bifurcations were located, leading to stable and unstable periodic branches over a small parameter range. Schmidt, Clinch and Ray (46) provided the first experimental evidence of multiple steady states for non-isothermal solution polymerization. Their... [Pg.315]

In 1966, a new class of polyols that were highly useful in enhancing the modulus of polyurethane foams and elastomers, while maintaining other desirable properties, was introduced to the marketplace (66, 67). These polyols had the unique feature of containing in situ, free-radical polymerized vinyl polymer particles that were grafted to the polyol. The final product, which was termed a polymer polypi, is a conventional or an ethylene oxide-capped poly(propylene oxide) polyol that contains a stable dispersion of the vinyl polymer that acts as a reinforcing filler. When monomers such as acrylonitrile and styrene/acry-... [Pg.127]

The last decades have witnessed the emergence of new living Vcontrolled polymerizations based on radical chemistry [81, 82]. Two main approaches have been investigated the first involves mediation of the free radical process by stable nitroxyl radicals, such as TEMPO while the second relies upon a Kharash-type reaction mediated by metal complexes such as copper(I) bromide ligated with 2,2 -bipyridine. In the latter case, the polymerization is initiated by alkyl halides or arenesulfonyl halides. Nitroxide-based initiators are efficient for styrene and styrene derivatives, while the metal-mediated polymerization system, the so called ATRP (Atom Transfer Radical Polymerization) seems the most robust since it can be successfully applied to the living Vcontrolled polymerization of styrenes, acrylates, methacrylates, acrylonitrile, and isobutene. Significantly, both TEMPO and metal-mediated polymerization systems allow molec-... [Pg.32]

The types of compounds that can be polymerized readily by the radical-chain mechanism are the same types that easily undergo free-radical addition reactions. Alkenes with aryl, ester, nitrile, or halide substituent groups that can stabilize the intermediate radical are most susceptible to radical polymerization. Terminal alkenes are generally more reactive toward radical-chain polymerization than more highly substituted isomers. The dominant mode of addition in radical-chain polymerization is head-to-tail. The reason for this orientation is that each successive addition of monomer takes place in such a way that the most stable possible radical intermediate is formed. For example, the addition to styrene occurs to give the phenyl-substituted radical to acrylonitrile, to give the cyano-substituted radical ... [Pg.461]


See other pages where Stable free radical polymerization styrene-acrylonitrile is mentioned: [Pg.39]    [Pg.26]    [Pg.641]    [Pg.72]    [Pg.470]    [Pg.41]   
See also in sourсe #XX -- [ Pg.34 , Pg.35 ]




SEARCH



Free radical styrene

Free radicals stable

Free styrene

Polymerization free radical

Polymerized Styrenes

Radicals stable

STYRENE-ACRYLONITRILE

Stable free-radical polymerization

Styrene free radical polymerization

Styrene, radical polymerization

© 2024 chempedia.info