Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radical chain reaction, production

The result of the steady-state condition is that the overall rate of initiation must equal the total rate of termination. The application of the steady-state approximation and the resulting equality of the initiation and termination rates permits formulation of a rate law for the reaction mechanism above. The overall stoichiometry of a free-radical chain reaction is independent of the initiating and termination steps because the reactants are consumed and products formed almost entirely in the propagation steps. [Pg.683]

The presence of one carbonyl group per oligomer molecule was also ascertained. The orange colour of the resin suggested that some minor event during the photopolymerization produced chromophores in small concentrations. The presence of furoin among the products corroborated the proposed mechanism, which was shown not to involve free radical chain reactions. [Pg.67]

Formation of cuprene is either by a free-radical chain reaction or by clustering around the parent ion (cluster size 20) followed by neutralization, which is not a chain process. The M /N value for decomposition of acetylene is about 20, giving the corresponding G value as 70-80, which is very large. The G value of benzene production is 5, whereas the G of conversion of monomers into the polymer is 60. [Pg.136]

Hydrogen halides will easily add to unsaturated compounds under radiolysis or photolysis. The free-radical chain reaction process is initiated by the dissociation of the halide or by the radiolytic production of radicals from the halide or the organic compound. Thus, for the radiolysis of a mixture of HBr and ethene the postulated initiation is... [Pg.369]

Free-radical chain reactions have been reviewed60. The cyclization of dienes by the action of free radicals is illustrated for the case of the 1,6-heptadiene derivative 90 (E = CC Me) in equation 56. Treatment with tosyl radicals, produced from tosyl chloride and a catalytic amount of dibenzoyl peroxide, generates the radicals 91, which cyclize to 92. The latter reacts with tosyl chloride to form 93 and tosyl radicals are regenerated. The product is obtained in 85% yield as a 6 1 mixture of cis- and fraws-isomers61. [Pg.522]

Although the propagation reactions are only shown once, you should be aware that they occur in a sequence a very large number of times before the termination reactions remove the reactive radicals. Thus, free-radical chain reactions are characterised by the formation of a very large number of product molecules initiated by the absorption of a single photon in the initiation step that is, chain reactions act as chemical amplifiers of the initial absorption step. [Pg.129]

These are just a few of the many products, and the reactions are by no means as simple as these equations imply. These reactions occur by homogeneous free-radical chain reactions,... [Pg.149]

Combustion processes are fast and exothermic reactions that proceed by free-radical chain reactions. Combustion processes release large amounts of energy, and they have many applications in the production of power and heat and in incineration. These processes combine many of the complexities of the previous chapters complex kinetics, mass transfer control, and large temperature variations. They also frequently involve multiple phases because the oxidant is usually air while fuels are frequently liquids or solids such as coal, wood, and oil drops. [Pg.399]

Co-oxidation of indene and thiophenol in benzene solution is a free-radical chain reaction involving a three-step propagation cycle. Autocatalysis is associated with decomposition of the primary hydroperoxide product, but the system exhibits extreme sensitivity to catalysis by impurities, particularly iron. The powerful catalytic activity of N,N -di-sec-butyl-p-phenylenediamine is attributed on ESR evidence to the production of radicals, probably >NO-, and replacement of the three-step propagation by a faster four-step cycle involving R-, RCV, >NO, and RS- radicals. Added iron complexes produce various effects depending on their composition. Some cause a fast initial reaction followed by a strong retardation, then re-acceleration and final decay as reactants are consumed. Kinetic schemes that demonstrate this behavior but are not entirely satisfactory in detail are discussed. [Pg.209]

The co-oxidation of indene and thiophenol in benzene proceeds by a three-step cyclic free radical chain reaction. Autocatalysis associated with the hydroperoxide which is the main primary product occurs, but the effect is complicated by other trace components. The reaction is extremely sensitive to catalysts and inhibitors, and its kinetic features are determined by the initiation and termination processes. [Pg.225]

It has already been pointed out (p. 73) that the postulate of free radical chain reactions provided a reasonable explanation for early results of the radiolyses of gases. It was later suggested10 that the radiation chemistry of aqueous solutions could best be explained by the production of H atoms and OH radicals. Subsequently, the results of a large variety of radiolyses were explained in terms of radical reactions occurring therein. Although such experiments did not provide conclusive evidence for the existence of free radicals in the systems, the results obtained, e.g. product analysis, rate coefficients, were not inconsistent with the occurrence of free radical processes. [Pg.86]

The foods can be protected against lipid oxidation either by the addition of antioxidants or by packaging in vacuum or inert gases to exclude oxygen. The antioxidants can be of various types. They can work as "chain-breakers" that interfere with the free radical chain reaction, as "metal inactivators", that bind otherwise pro-oxidative metals, or as "peroxide destroyers", which react with hydroperoxides to give stable products by nonradical processes (1). [Pg.335]

The bromination of propane C3H8 proceeds via a free radical chain reaction. The dominant major product is HBr, with 2-bromopropane produced in substantial amounts. 1-bromopropane, though produced in much smaller amounts, can still be classified as a major product. 2 3-dimethylbutane is a minor product, and hexane and 2-methylpentane are trace products. [Pg.260]

Therefore, free-radical-chain reactions proceeding by short chains (which makes these reactions less profitable for effective transformation into desirable products) may be significantly intensified by chemical induction and, hence, heighten interest in their application. [Pg.33]

As previous reactions have already shown, this reaction seems to be a free radical chain reaction. The experimental evidence so far available for such a mechanism is the following (a) the formation of dehydrodimers in the absence of an olefin (b) the formation of the anti-Mar-kovnikov 1 1 adduct as the major product when a terminal olefin is employed as the addend, and (c) the telomeric products obtained. Thus, reaction sequence can be summarized as follows ... [Pg.103]

Most important, the existence of an induction or inhibition period suggests a free-radical step in the decomposition of the thiophene ring. Further evidence for the free-radical nature of the reaction was obtained from experiments conducted under less severe conditions in order to isolate the initial ring-opened intermediate before subsequent loss of the one-carbon fragment. Efforts to isolate the initial decomposition product were unsuccessful. Apparently, the loss of the one-carbon fragment occurs rapidly, consistent with a free-radical chain reaction of some type. [Pg.62]

The basic mechanism of autoxidation at elevated temperatures is similar to that of room-temperature oxidation, i.e., a free radical chain reaction involving the formation and decomposition of hydroperoxide intermediates. Although relative proportions of the isomeric hydroperoxides, specific for oleate, linoleate and linolenate, vary with oxidation temperatures in the range 25°C -80°C, their qualitative pattern is the same (. Likewise, the major decomposition products isolated from fats oxidized over wide temperature ranges are those reflecting autoxidation of their constituent fatty acids (2 -6). The mechanisms and products of lipid oxidation have been extensively studied. The reader is referred to the numerous monographs, reviews and research articles available in the literature (1,A,7,8,9,10,11). [Pg.94]

Soluble Co compounds are generally employed in the autoxidation of hydrocarbons, i.e., the oxidation with O2 as the oxidant. In neat hydrocarbons, low concentrations of Co compounds accelerate the autoxidation since the Co2+/Co3+ couple is excellent for decomposing alkyl hydroperoxides and thus initiates free radical chain reactions. However, at high conversions, the Co may be deactivated by formation of insoluble clusters with side products of the hydrocarbon autoxidation. Moreover, high concentrations of a Co compound may actually inhibit the reaction because Co also terminates radical chains by reaction with ROO radicals ... [Pg.32]

In early attempts to produce an iron-oxo species (20) from typical porphyrins like chloro-a,/3,y,8-tetraphenylporphinatoiron(III) [Fe(III)TPP-Cl] and chloroferriprotoporphyrin(IX)[Fe(III)PPIX-Cl], we examined the reaction of t-butyl hydroperoxide and peroxy-acids with alkanes and olefins in the presence of these catalysts. With peroxyacids, decomposition of the porphyrin ring was observed, while with the f-butyl hydroperoxides, product distributions were indistinguishable from free-radical chain reactions initiated photochem-ically in the absence of any metals. [Pg.283]


See other pages where Free radical chain reaction, production is mentioned: [Pg.173]    [Pg.44]    [Pg.168]    [Pg.38]    [Pg.79]    [Pg.684]    [Pg.173]    [Pg.202]    [Pg.182]    [Pg.395]    [Pg.146]    [Pg.65]    [Pg.9]    [Pg.337]    [Pg.389]    [Pg.427]    [Pg.169]    [Pg.389]    [Pg.180]    [Pg.317]    [Pg.1684]    [Pg.276]    [Pg.530]    [Pg.155]    [Pg.127]    [Pg.243]    [Pg.152]    [Pg.133]    [Pg.436]    [Pg.894]    [Pg.557]   


SEARCH



Chain radical

Free chains

Free product

Free radical chain reactions

Free radical products

Free radical reaction

Free radicals radical chains

Free-radical chain

Radical chain reactions

Radical production

Radicals free-radical reactions

Radicals radical chain reaction

© 2024 chempedia.info