Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radical addition retarders

The trend in relative effectiveness of RAFT agents with varying Z is rationalized in terms of interaction of Z with the C=S double bond to activate or deactivate that group towards free radical addition. Substituents that facilitate addition generally retard fragmentation. O-Alkyl xanthates (Z=0-alkyl, Table... [Pg.506]

The free radical addition process is used to polymerize the resin. The catalyst (organic peroxides) becomes the source for the free radicals, and with elevated temperature the heat decomposes the peroxide, producing the free radicals. Peroxyester and benzoyl peroxide are the organic peroxides primarily used at elevated temperatures. (See peroxide.) Promoters used singularly or in combination and retarders complete the cnre system. [Pg.423]

Flame Retardants. Flame retardants are added to nylon to eliminate burning drips and to obtain short self-extinguishing times. Halogenated organics, together with catalysts such as antimony trioxide, are commonly used to give free-radical suppression in the vapor phase, thus inhibiting the combustion process. Some common additives are decabromodiphenyl oxide, brominated polystyrene, and chlorinated... [Pg.274]

Because of the low reactivity and tendency to undergo chain transfer, small additions of most aHyl compounds retard polymerization of typical vinyl monomers ia free-radical systems (1,3) and may be useful ia controlling molecular weight and stmcture ia polymers. [Pg.80]

Some inorganic fillers are used as flame retardants in rubber base formulations. Flame retardants act in two ways (1) limiting or reducing access of oxygen to the combustion zone (2) reacting with free radicals (especially HO ), thus acting as terminator for combustion-propagation reaction. The additives most widely used as flame retardants for polymers are antimony oxides and alumina trihydrate. [Pg.637]

One of the present authors (31) has developed a series of additives which combine the features of both free radical inhibitors and flame retardants of the tetrabromophthalimide or chlorendic imide type with hindered phenol antioxidant structures such as the following compounds ... [Pg.102]

The reverse micelles stabilized by SDS retard the autoxidation of ethylbenzene [27]. It was proved that the SDS micelles catalyze hydroperoxide decomposition without the formation of free radicals. The introduction of cyclohexanol and cyclohexanone in the system decreases the rate of hydroperoxide decay (ethylbenzene, 363 K, [SDS] = 10 3mol L [cyclohexanol] =0.03 mol L-1, and [cyclohexanone] = 0.01 mol L 1 [27]). Such an effect proves that the decay of MePhCHOOH proceeds in the layer of polar molecules surrounding the micelle. The addition of alcohol or ketone lowers the hydroperoxide concentration in such a layer and, therefore, retards hydroperoxide decomposition. The surfactant AOT apparently creates such a layer around water moleculesthat is very thick and creates difficulties for the penetration of hydroperoxide molecules close to polar water. The phenomenology of micellar catalysis is close to that of heterogeneous catalysis and inhibition (see Chapters 10 and 20). [Pg.440]

Nitroxyl radicals as alkyl radical acceptors are known to be very weak antioxidants due to the extremely fast addition of dioxygen to alkyl radicals (see Chapter 2). They retard the oxidation of solid polymers due to specific features of free radical reactions in the solid polymer matrix (see Chapter 19). However, the combination of two inhibitors, one is the peroxyl radical acceptor (phenol, aromatic amine) and another is the alkyl radical acceptor (nitroxyl radical) showed the synergistic action [44-46]. The results of testing the combination of nitroxyl radical (>NO ) (2,2,6,6-tetramethyl-4-benzoylpiperidine-l-oxyl) + amine (phenol) in the autoxidation of nonene-1 at 393 K are given here ([>NO ]o + [InH]o = 1.5 x 10 4mol L 1 p02 98 kPa) [44]. [Pg.631]

Metals and metal oxides, as a rule, accelerate the liquid-phase oxidation of hydrocarbons. This acceleration is produced by the initiation of free radicals via catalytic decomposition of hydroperoxides or catalysis of the reaction of RH with dioxygen (see Chapter 10). In addition to the catalytic action, a solid powder of different compounds gives evidence of the inhibiting action [1-3]. Here are a few examples. The following metals in the form of a powder retard the autoxidation of a hydrocarbon mixture (fuel T-6, at T= 398 K) Mg, Mo, Ni, Nb V, W, and Zn [4,5]. The retarding action of the following compounds was described in the literature. [Pg.685]

Hence, the copper surface catalyzes the following reactions (a) decomposition of hydroperoxide to free radicals, (b) generation of free radicals by dioxygen, (c) reaction of hydroperoxide with amine, and (d) heterogeneous reaction of dioxygen with amine with free radical formation. All these reactions occur homolytically [13]. The products of amines oxidation additionally retard the oxidation of hydrocarbons after induction period. The kinetic characteristics of these reactions (T-6, T = 398 K, [13]) are presented below. [Pg.689]

Steric effects, although clearly recognized, introduce relatively small rate retardations or increases in selectivity in all these examples, probably because the transition states of all these addition reactions are rather loose ones, i.e., they occur early on the reaction coordinate when the distances between the radical and the substrates are still rather large An extreme example of a free radical reaction which does not response heavily to steric effects, is the Srn 1 -substitution reaction of Kornblum by which bonds between two quaternary carbons can be formed with great ease and in good yield, as is shown by one of many published examples The decisive step... [Pg.29]

Baxendale, Evans and coworkers reported in 1946 that the polymerization of methyl methacrylate (MMA) in aqueous solution was characterized by homogeneous solution kinetics, i.e. where mutual termination of free radicals occurred, in spite of the fact that the polymer precipitated as a separate phase. Increases in the rates of polymerization upon the addition of the surfactant cetyl trimethyl ammonium bromide (CTAB) were attributed to the retardation of the rate of coagulation of particles, which was manifested in a reduction in the effective rate constant for mutual termination,... [Pg.11]


See other pages where Free radical addition retarders is mentioned: [Pg.1009]    [Pg.452]    [Pg.84]    [Pg.506]    [Pg.526]    [Pg.468]    [Pg.88]    [Pg.720]    [Pg.267]    [Pg.26]    [Pg.204]    [Pg.362]    [Pg.594]    [Pg.644]    [Pg.102]    [Pg.1278]    [Pg.102]    [Pg.158]    [Pg.177]    [Pg.204]    [Pg.490]    [Pg.454]    [Pg.35]    [Pg.595]    [Pg.645]    [Pg.229]    [Pg.897]    [Pg.223]    [Pg.33]   
See also in sourсe #XX -- [ Pg.70 , Pg.71 ]




SEARCH



Free radical addition

Retarding additives

© 2024 chempedia.info