Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free energy types

Whereas the single event concept accounts for the effect of the structure on the frequency factor of an elementary step the linear free energy type relationship of... [Pg.94]

Fig. Vn-2. Conformation for a hypothetical two-dimensional crystal, (a) (lO)-type planes only. For a crystal of 1 cm area, the total surface firee energy is 4 x lx 250 = 1000 eigs. (b) (ll)-type planes only. For a crystal of 1-cm area, the total surface free eneigy is 4 x 1 x 225 = 900 ergs, (c) For the shape given by the Wulff construction, the total surface free energy of a 1-cm crystal is (4 x 0.32 x 250) + (4 x 0.59 x 225) = 851 ergs, (d) Wulff construction considering only (10)- and (ll)-type planes. Fig. Vn-2. Conformation for a hypothetical two-dimensional crystal, (a) (lO)-type planes only. For a crystal of 1 cm area, the total surface firee energy is 4 x lx 250 = 1000 eigs. (b) (ll)-type planes only. For a crystal of 1-cm area, the total surface free eneigy is 4 x 1 x 225 = 900 ergs, (c) For the shape given by the Wulff construction, the total surface free energy of a 1-cm crystal is (4 x 0.32 x 250) + (4 x 0.59 x 225) = 851 ergs, (d) Wulff construction considering only (10)- and (ll)-type planes.
The present discussion is restricted to an introductory demonstration of how, in principle, adsorption data may be employed to determine changes in the solid-gas interfacial free energy. A typical adsorption isotherm (of the physical adsorption type) is shown in Fig. X-1. In this figure, the amount adsorbed per gram of powdered quartz is plotted against P/F, where P is the pressure of the adsorbate vapor and P is the vapor pressure of the pure liquid adsorbate. [Pg.350]

It may be iisefiil to mention here one currently widely applied approximation for barrierless reactions, which is now frequently called microcanonical and canonical variational transition state theory (equivalent to the minimum density of states and maximum free energy transition state theory in figure A3,4,7. This type of theory can be understood by considering the partition fiinctions Q r ) as fiinctions of r similar to equation (A3,4.108) but with F (r ) instead of V Obviously 2(r J > Q so that the best possible choice for a... [Pg.784]

While simulations reach into larger time spans, the inaccuracies of force fields become more apparent on the one hand properties based on free energies, which were never used for parametrization, are computed more accurately and discrepancies show up on the other hand longer simulations, particularly of proteins, show more subtle discrepancies that only appear after nanoseconds. Thus force fields are under constant revision as far as their parameters are concerned, and this process will continue. Unfortunately the form of the potentials is hardly considered and the refinement leads to an increasing number of distinct atom types with a proliferating number of parameters and a severe detoriation of transferability. The increased use of quantum mechanics to derive potentials will not really improve this situation ab initio quantum mechanics is not reliable enough on the level of kT, and on-the-fly use of quantum methods to derive forces, as in the Car-Parrinello method, is not likely to be applicable to very large systems in the foreseeable future. [Pg.8]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

There are two ways in which the volume occupied by a sample can influence the Gibbs free energy of the system. One of these involves the average distance of separation between the molecules and therefore influences G through the energetics of molecular interactions. The second volume effect on G arises from the contribution of free-volume considerations. In Chap. 2 we described the molecular texture of the liquid state in terms of a model which allowed for vacancies or holes. The number and size of the holes influence G through entropy considerations. Each of these volume effects varies differently with changing temperature and each behaves differently on opposite sides of Tg. We shall call free volume that volume which makes the second type of contribution to G. [Pg.249]

In case of the rigid lock-and-key type receptor forming five hydrogen bonds plus two extended electrostatic attractions (Fig. 3a), one mismatched hydrogen bond will result in only a small reduction in overall binding free energy 4.18-8.36 kJ mol (1-2 kcal mol ) out of... [Pg.175]

In Figure 7b, the data are plotted as AG yielding a linear function. Extrapolation to 2ero denaturant provides a quantitative estimate of the intrinsic stability of the protein, AG, which in principle is the free energy of unfolding for the protein in the absence of denaturant. Comparison of the AG values between mutant and wild-type proteins provides a quantitative means of assessing the effects of point mutations on the stability of a protein. [Pg.201]

The effect of different types of comonomers on varies. VDC—MA copolymers mote closely obey Flory s melting-point depression theory than do copolymers with VC or AN. Studies have shown that, for the copolymers of VDC with MA, Flory s theory needs modification to include both lamella thickness and surface free energy (69). The VDC—VC and VDC—AN copolymers typically have severe composition drift, therefore most of the comonomer units do not belong to crystallizing chains. Hence, they neither enter the crystal as defects nor cause lamellar thickness to decrease, so the depression of the melting temperature is less than expected. [Pg.431]

Reactor types modeled A, stoichiometric conversion B, equiUbrium/free-energy minimization, continuous stirred tank, and plug flow C, reactive distillation. Some vendors have special models for special reactions also, private company simulators usually have reactors of specific interest to their company. [Pg.75]

Free energy simulations are a useful means of quantitating whether the free energy and not simply the energy is shifting in the predicted manner for the mutant (see Chapter 9). The difference in the free energy changes upon reduction between a wild-type and a mutant, AAG = AG — AG, where the asterisk indicates the mutant, can be calculated in two ways via the thennodynamic cycle shown in Scheme 2,... [Pg.407]

Solvent effects on chemical equilibria and reactions have been an important issue in physical organic chemistry. Several empirical relationships have been proposed to characterize systematically the various types of properties in protic and aprotic solvents. One of the simplest models is the continuum reaction field characterized by the dielectric constant, e, of the solvent, which is still widely used. Taft and coworkers [30] presented more sophisticated solvent parameters that can take solute-solvent hydrogen bonding and polarity into account. Although this parameter has been successfully applied to rationalize experimentally observed solvent effects, it seems still far from satisfactory to interpret solvent effects on the basis of microscopic infomation of the solute-solvent interaction and solvation free energy. [Pg.432]

The standard free energy can be divided up in two ways to explain the mechanism of retention. First, the portions of free energy can be allotted to specific types of molecular interaction that can occur between the solute molecules and the two phases. This approach will be considered later after the subject of molecular interactions has been discussed. The second requires that the molecule is divided into different parts and each part allotted a portion of the standard free energy. With this approach, the contributions made by different parts of the solvent molecule to retention can often be explained. This concept was suggested by Martin [4] many years ago, and can be used to relate molecular structure to solute retention. Initially, it is necessary to choose a molecular group that would be fairly ubiquitous and that could be used as the first building block to develop the correlation. The methylene group (CH2) is the... [Pg.54]

The Distribution of Standard Free Energy Between Different Types of Molecular Interactions... [Pg.75]

In contrast to apportioning the standard free energy between different groups in the solute molecule, the standard free energy can also be dispensed between the different types of forces involved in the solute/phase-phase distribution. This approach has been elegantly developed by Martire et al. [13]. In a simplified form, the standard free energy can be divided into portions that result from the different types of interaction, e.g.,... [Pg.75]


See other pages where Free energy types is mentioned: [Pg.173]    [Pg.173]    [Pg.261]    [Pg.267]    [Pg.168]    [Pg.169]    [Pg.186]    [Pg.568]    [Pg.587]    [Pg.596]    [Pg.602]    [Pg.608]    [Pg.337]    [Pg.114]    [Pg.411]    [Pg.473]    [Pg.234]    [Pg.464]    [Pg.163]    [Pg.563]    [Pg.286]    [Pg.2016]    [Pg.205]    [Pg.15]    [Pg.58]    [Pg.147]    [Pg.169]    [Pg.353]    [Pg.358]    [Pg.408]    [Pg.449]    [Pg.349]    [Pg.323]    [Pg.231]    [Pg.56]    [Pg.75]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Energy types

Free energy simulations, types

Free energy simulations, types Monte Carlo

Free energy simulations, types molecular dynamics

Free energy variation, types

Free energy variation, types variations

Helmholtz-type free energies

© 2024 chempedia.info