Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free-electron method

There are other methods. For a discussion of the free-electron method, see Streitwieser Jr., A. Molecular Orbital Theory for Organic Chemists Wiley NY, 1961, p. 27. For the nonpairing method, in which benzene is represented as having three electrons between adjacent carbons, see Hirst, D.M. Linnett, J.W. J. Chem. Soc., 1962,1035 Firestone, R.A. J. Org. Chem., 1969, 34, 2621. [Pg.78]

The theoretical models which have been used to describe the bonding in cluster compounds of the main group and transition metal elements are reviewed. The historical development of these models is outlined and special emphasis is placed on those studies which have led to the elucidation of structure-electron count correlations. Theoretical treatments of cluster bonding are based on localised, delocalised (molecular orbital) or free electron methods derived from the solution of the Schrodinger equation for a particle on a sphere. A detailed analysis of the Tensor Surface Harmonic method, as an example of a free electron model, is presented. Group theoretical consequences of the model are also presented. [Pg.29]

A word of warning should be inserted here with regard to the model used in all these calculations. The free electron methods treat the ring current as a line current in the carbocyclic skeleton, and it may be argued that the close agreement between the quantum mechanical methods and the (single) circular magnetic shell method with respect to the calculated chemical shift of benzene implies that the same criticism may be levelled at the non-classical methods (and is probably related to the effects of... [Pg.28]

Different methods exist to compute wave functions 01(7 ) that are the solutions of equations of the type Eq.(2.5.) If the potential K(r) is small compared with the kinetic energy, it is useful to consider 0t(7) approximately as a sum of plane waves, an approximation often used in solid physics. If 0j(r) is approximated by a single plane wave the method is called the free-electron method. Such solutions are discussed later. We will first consider the wave function 0t( r ) to be a linear combination of atomic orbitals centered on the lattice atoms ... [Pg.28]

A red shift in the absorption maxima and a gradual increase in the molar absorption coefficients (e) can be observed with increasing chain length. This is due to the a-conjugation along the silicon main chain depending on substituent and conformational effects that can be explained by molecular orbital theory (MO). The LCAO, Sandorfy model C and FE (free electron) methods have been used. [Pg.21]

Computational solid-state physics and chemistry are vibrant areas of research. The all-electron methods for high-accuracy electronic stnicture calculations mentioned in section B3.2.3.2 are in active development, and with PAW, an efficient new all-electron method has recently been introduced. Ever more powerfiil computers enable more detailed predictions on systems of increasing size. At the same time, new, more complex materials require methods that are able to describe their large unit cells and diverse atomic make-up. Here, the new orbital-free DFT method may lead the way. More powerful teclmiques are also necessary for the accurate treatment of surfaces and their interaction with atoms and, possibly complex, molecules. Combined with recent progress in embedding theory, these developments make possible increasingly sophisticated predictions of the quantum structural properties of solids and solid surfaces. [Pg.2228]

Free Electron Molecular Orbital method colour and constitution, 1, 342 Freelingyne occurrence, 4, 706 Free radical processes in photography, 1, 387-389 Friedlander synthesis quinolines, 2, 443 thioindigo dyes, 4, 910 Fries rearrangement chroman-4-one synthesis from, 3, 850 Fructose, 1-deoxy- C NMR, 4, 575 Frusemide as diuretic, 1, 174 metabolism, 1, 245 FS-32 — see 1/f-Indazole, l-[3-... [Pg.628]

Another convenient method for the preparation of tertiary enamines involves the dehydrogenation of saturated bases with mercuric acetate (111-116). A trans-1,2 elimination occurs, which requires an antiperi-planar position of the nitrogen-free electron pair and the eliminated atom. A preferential elimination of the hydrogen atom from the tertiary carbon atom is supposed. Overoxidation can be avoided by adding disodium ethyl-enediaminotetraacetate to the reaction mixture (117). [Pg.261]

Slater s Xa method is now regarded as so much history, but it gave an important stepping stone towards modem density functional theory. In Chapter 12, I discussed the free-electron model of the conduction electrons in a solid. The electrons were assumed to occupy a volume of space that we identified with the dimensions of the metal under smdy, and the electrons were taken to be non-interacting. [Pg.221]

The idea of constructing a good wave function of a many-particle system by means of an exact treatment of the two-particle correlation is also underlying the methods recently developed by Brueck-ner and his collaborators for studying nuclei and free-electron systems. The effective two-particle reaction operator and the self-consistency conditions introduced in this connection may be considered as generalizations of the Hartree-Fock scheme. [Pg.258]

The method of superposition of configurations is essentially based on the assumption that the basic orbitals form a complete set. The most popular basis used so far in the literature is certainly formed by the hydrogen-like functions, which set contains a discrete and a continuous part. The discrete subset corresponds physically to the bound states of an electron around a proton, whereas the continuous part corresponds to a free electron scattered by a proton, or classically to the elliptic and hyperbolic orbits, respectively, in a central-field problem. [Pg.274]

The longer the chain of unbranched carbenium ions is, the more the calculated values deviate from those found experimentally in the direction of higher stability. However, the expected order of ion stability (primary < secondary < tertiary) remains intact. For cations, which are able to delocalize the positive charge due to conjugation in phenyl rings, the calculated stability is too small. The example of the acetyl cation shows that the reliability of the MINDO/3 method decreases, if charged species, especially those containing hetero atoms with free electron pairs, are calculated. [Pg.203]

The Vacuum Reference The first reference in the double-reference method enables the surface potential of the metal slab to be related to the vacuum scale. This relationship is determined by calculating the workfunction of the model metal/water/adsorbate interface, including a few layers of water molecules. The workfunction, — < ermi. is then used to calibrate the system Fermi level to an electrochemical reference electrode. It is convenient to choose the normal hydrogen electrode (NHE), as it has been experimentally and theoretically determined that the NHE potential is —4.8 V with respect to the free electron in a vacuum [Wagner, 1993]. We therefore apply the relationship... [Pg.101]

It is well known that the energy profiles of Compton scattered X-rays in solids provide a lot of important information about the electronic structures [1], The application of the Compton scattering method to high pressure has attracted a lot of attention since the extremely intense X-rays was obtained from a synchrotron radiation (SR) source. Lithium with three electrons per atom (one conduction electron and two core electrons) is the most elementary metal available for both theoretical and experimental studies. Until now there have been a lot of works not only at ambient pressure but also at high pressure because its electronic state is approximated by free electron model (FEM) [2, 3]. In the present work we report the result of the measurement of the Compton profile of Li at high pressure and pressure dependence of the Fermi momentum by using SR. [Pg.334]

We can expect to see future research directed at QM/MM and ab initio simulation methods to handle these electronic structure effects coupled with path integral or approximate quantum free energy methods to treat nuclear quantum effects. These topics are broadly reviewed in [32], Nuclear quantum effects for the proton in water have already received some attention [30, 76, 77]. Utilizing the various methods briefly described above (and other related approaches), free energy calculations have been performed for a wide range of problems involving proton motion [30, 67-69, 71, 72, 78-80]. [Pg.417]

In reality, as the barrier becomes narrower, it deviates from the square shape. One often used model is the parabolic barrier (dashed line in Fig. 1). When the barrier is composed of molecules, not only is the barrier shape difficult to predict, but the effective mass of the electron can deviate significantly from the free-electron mass. In order to take these differences into account, a more sophisticated treatment of the tunneling problem, based on the WKB method, can be used [21, 29-31]. Even if the metals are the same, differences in deposition methods, surface crystallographic orientation, and interaction with the active layer generally result in slightly different work functions on either side of the barrier. [Pg.193]

The Kronig-Penney model, although rather crude, has been used extensively to generate a substantial amount of useful solid-state theory [73]. Simple free-electron models have likewise been used to provide logical descriptions of a variety of molecular systems, by a method known in modified form as the Hiickel Molecular Orbital (HMO) procedure [74]. [Pg.325]


See other pages where Free-electron method is mentioned: [Pg.5]    [Pg.27]    [Pg.24]    [Pg.5]    [Pg.27]    [Pg.24]    [Pg.2201]    [Pg.2202]    [Pg.2213]    [Pg.72]    [Pg.295]    [Pg.78]    [Pg.6]    [Pg.264]    [Pg.441]    [Pg.43]    [Pg.182]    [Pg.184]    [Pg.261]    [Pg.342]    [Pg.367]    [Pg.216]    [Pg.5]    [Pg.104]    [Pg.322]    [Pg.322]    [Pg.323]    [Pg.32]    [Pg.166]    [Pg.342]    [Pg.61]    [Pg.159]    [Pg.30]    [Pg.140]    [Pg.82]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Electron Methods

Free electrons

Free-electron molecular orbital method FEMO)

Free-electron molecular-orbital method

The Free-Electron MO Method

The Free-Electron Molecular Orbital Method

The Spin-Free Valence Bond Method Applications to Metallic and Electron Rich Systems

© 2024 chempedia.info