Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral density Fourier transform

Fig. 11. a The free induction decay (correlation function) with different relaxation times Tc s, and b Fourier transforms (spectral density)... [Pg.60]

BPTI spectral densities Cosine Fourier transforms of the velocity autocorrelation function... [Pg.237]

Fig. 8. Spectral densities for BPTI as computed by cosine Fourier transforms of the velocity autocorrelation function by Verlet (7 = 0) and LN (7 = 5 and 20 ps ). Data are from [88]. Fig. 8. Spectral densities for BPTI as computed by cosine Fourier transforms of the velocity autocorrelation function by Verlet (7 = 0) and LN (7 = 5 and 20 ps ). Data are from [88].
Another view of this theme was our analysis of spectral densities. A comparison of LN spectral densities, as computed for BPTI and lysozyme from cosine Fourier transforms of the velocity autocorrelation functions, revealed excellent agreement between LN and the explicit Langevin trajectories (see Fig, 5 in [88]). Here we only compare the spectral densities for different 7 Fig. 8 shows that the Langevin patterns become closer to the Verlet densities (7 = 0) as 7 in the Langevin integrator (be it BBK or LN) is decreased. [Pg.255]

The generation of photons obeys Poisson statistics where the variance is N and the deviation or noise is. The noise spectral density, N/, is obtained by a Fourier transform of the deviation yielding the following at sampling frequency,... [Pg.422]

The framework we adopted for measuring the scaling behavior from AFM images is the following. The 2-D power spectral density (PSD) of the Fast Fourier Transform of the topography h(x, y) is estimated [541, then averaged over the azimuthal angle

[Pg.413]

For a pure state density operator, the Fourier transform of this double-time Green s function yields the spectral representation of the propagator (21)... [Pg.57]

Noise is characterized by the time dependence of noise amplitude A. The measured value of A (the instantaneous value of potential or current) depends to some extent on the time resolution of the measuring device (its frequency bandwidth A/). Since noise always is a signal of alternating sign, its intensity is characterized in terms of the mean square of amplitude, A, over the frequency range A/, and is called (somewhat unfortunately) noise power. The Fourier transform of the experimental time dependence of noise intensity leads to the frequency dependence of noise intensity. In the literature these curves became known as PSD (power spectral density) plots. [Pg.626]

In Equation (5), we can first notice (i) the factor 1/r6 which makes the spectral density very sensitive to the interatomic distance, and (ii) the dynamical part which is the Fourier transform of a correlation function involving the Legendre polynomial. We shall denote this Fourier transform by (co) (we shall dub this quantity "normalized spectral density"). For calculating the relevant longitudinal relaxation rate, one has to take into account the transition probabilities in the energy diagram of a two-spin system. In the expression below, the first term corresponds to the double quantum (DQ) transition, the second term to single quantum (IQ) transitions and the third term to the zero quantum (ZQ) transition. [Pg.94]

As seen from the above theoretical developments, accessing geometrical (and stereochemical) information implies at least an estimation of the dynamical part of the various relaxation parameters. The latter is represented by spectral densities which rest on the calculation of the Fourier transform of auto- or cross-correlation functions. These calculations require necessarily a model for describing molecular reorientation... [Pg.101]

The linear response theory [50,51] provides us with an adequate framework in order to study the dynamics of the hydrogen bond because it allows us to account for relaxational mechanisms. If one assumes that the time-dependent electrical field is weak, such that its interaction with the stretching vibration X-H Y may be treated perturbatively to first order, linearly with respect to the electrical field, then the IR spectral density may be obtained by the Fourier transform of the autocorrelation function G(t) of the dipole moment operator of the X-H bond ... [Pg.247]

We may recall and emphasize that the autocorrelation function obtained in the three representations I, II, and III must be equivalent, from the general properties of canonical transformation which must leave invariant the physical results. Thus, because of this equivalence, the spectral density obtained by Fourier transform of (43) and (45) will lead to the same Franck-Condon progression (51). [Pg.257]

On the other hand, the undamped autocorrelation function (17) we have obtained within the standard approach avoiding the adiabatic approximation must lead after Fourier transform to spectral densities involving very puzzling Dirac delta peaks given by... [Pg.257]

It has been shown by Giry et al [81] that, in this situation, the spectral density is the following Fourier transform ... [Pg.276]

The spectral density is the Fourier transform of this autocorrelation function, that... [Pg.292]

We can see that the different positions along the chain show distinct temperature-dependent relaxation curves. To further analyze these relaxation functions, we must Fourier transform them to determine their spectral density, which is best done employing an analytic representation of the data that... [Pg.43]

The measured spin relaxation parameters (longitudinal and transverse relaxation rates, Ri and P2> and heteronuclear steady-state NOE) are directly related to power spectral densities (SD). These spectral densities, J(w), are related via Fourier transformation with the corresponding correlation functions of reorientional motion. In the case of the backbone amide 15N nucleus, where the major sources of relaxation are dipolar interaction with directly bonded H and 15N CSA, the standard equations read [21] ... [Pg.288]

A similar approach, also based on the Kubo-Tomita theory (103), has been proposed in a series of papers by Sharp and co-workers (109-114), summarized nicely in a recent review (14). Briefly, Sharp also expressed the PRE in terms of a power density function (or spectral density) of the dipolar interaction taken at the nuclear Larmor frequency. The power density was related to the Fourier-Laplace transform of the time correlation functions (14) ... [Pg.76]

The carbon nuclei are to be identified with I, the proton nuclei with S, and the carbon-proton internuclear distance with r. The spectral density is the Fourier transform of a correlation function which is usually based on a probabilistic description of the motion modulating the dipole-dipole interactions. The spin-spin relaxation time, T2, is usually written directly as a function of spectral densities ( ). [Pg.272]

According to standard NMR theory, the spin-lattice relaxation is proportional to the spectral density of the relevant spin Hamiltonian fluctuations at the transition frequencies coi. The spectral density is given by the Fourier transform of the auto-correlation fimction of the single particle fluctuations. For an exponentially decaying auto-correlation function with auto-correlation time Tc, the well-known formula for the spectral density reads as ... [Pg.135]

The friction function (Eq. 4) is then the cosine Fourier transform of the spectral density. [Pg.5]

It is assumed that the noise voltage n(t) is the result of a real stationary process (Davenport and Root, 1958) with zero mean. Because it can be shown that the spectral density function S(f) is the Fourier transform of the autocorrelation function of the noise, it follows that the rms noise is given by... [Pg.165]

Time-dependent correlation functions are now widely used to provide concise statements of the miscroscopic meaning of a variety of experimental results. These connections between microscopically defined time-dependent correlation functions and macroscopic experiments are usually expressed through spectral densities, which are the Fourier transforms of correlation functions. For example, transport coefficients1 of electrical conductivity, diffusion, viscosity, and heat conductivity can be written as spectral densities of appropriate correlation functions. Likewise, spectral line shapes in absorption, Raman light scattering, neutron scattering, and nuclear jmagnetic resonance are related to appropriate microscopic spectral densities.2... [Pg.79]


See other pages where Spectral density Fourier transform is mentioned: [Pg.714]    [Pg.62]    [Pg.130]    [Pg.132]    [Pg.246]    [Pg.9]    [Pg.93]    [Pg.261]    [Pg.268]    [Pg.286]    [Pg.287]    [Pg.76]    [Pg.293]    [Pg.22]    [Pg.22]    [Pg.37]    [Pg.63]    [Pg.97]    [Pg.295]    [Pg.304]    [Pg.78]    [Pg.274]    [Pg.114]    [Pg.66]    [Pg.130]    [Pg.52]   
See also in sourсe #XX -- [ Pg.294 , Pg.295 , Pg.296 ]




SEARCH



Spectral density

Spectral density function Fourier transform

© 2024 chempedia.info