Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform multiple internal reflectance

Diffuse Reflectance, Attenuated Total Reflection or Multiple Internal Reflection, Photoacoustic (PAS), Photothemal Beam Deflection, Specular Reflection Absorption, and forensic applications with the diamond cell and the Fourier transform infrared (FTIR) microscope. In museum laboratories, FTIR applications have been used for problems of identification and degradation in art and archeology. (14)... [Pg.240]

Multiple Internal Reflection Fourier Transform Infrared Spectroscopy... [Pg.822]

Kolboe and Ellefsen (1962) and Michell et al. (1965) provided preliminary results indicating the feasibility of employing infrared spectroscopy to determine the lignin content of finely ground wood and pulp samples embedded in potassium chloride. Further development and refinement of this technique have led to methods for determination of lignin based on multiple internal reflectance infrared spectrometry (Marton and Sparks 1967) and diffuse reflectance Fourier transform spectrometry (Schultz et al. 1985). Lignin contents have also estimated by 13C CP/MAS/NMR spectrometry (Haw et al. 1984, Hemmingson and Newman 1985) (see Chap. 4.5). [Pg.43]

Ellipsometry is probably the only easy-to-use surface analysis method which can be operated in situ and in real time. On the contrary, multiple internal reflection Fourier transform infrared spectroscopy is a very powerful technique [38] but it is rather tricky to implement. Ellipsometry allows real time studies of the surface modification during exposure to the plasma, and after the treatment. Figure 10 shows for example the variation of and A ellipsometry angles upon fluorination of Si in fluorine-based plasmas as a function of pressure and gas mixture [39], thus demonstrating the sensitivity of the technique. Infrared ellipsometry has also been used with success to investigate reaction layer composition and formation on Si in CF4-based plasmas [40,41], or to monitor patterning [42]. [Pg.454]

Additional techniques exist for measuring fluid absorption at adhesive interfaces. Fourier transform infrared spectroscopy in the multiple internal reflection mode (FTIR-MIR) is an available technique for studying diffusion at the interface. FTlR-MlR has provided direct evidence of water accumulation, and therefore adhesive debonding, at the interface [12,13]. The technique of neutron reflectivity has also shown that the concentration of absorbed fluid can be significantly greater at the interface than in the bulk adhesive [14-18]. [Pg.72]

MIRFTIRS Multiple internal reflection Fourier transform infrared spectroscopy... [Pg.316]

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) Reflection-absorption infrared spectroscopy (RAIRS) (also known as infrared reflection absorption spectroscopy, IRAS or IRRAS) Multiple Internal reflection spectroscopy (MIR)... [Pg.4591]

ATR has been found as an easy to use, non-destmctive and surface-sensitive IR sampling technique for the in situ investigation of CMP processes (Hind et al., 2001). It was initially pushed by Harrick (1967) and comprehensively treated in his early book and following editions together with Mirabella (1985). Numerous alternative and partially deceptive names are used instead of ATR spectroscopy internal reflection spectroscopy, evanescent wave spectroscopy, frustrated total internal reflection (FTIR, which should not to be confused with Fourier-transform infrared spectroscopy) and multiple internal reflection (MIR, which should not to be confused with mid-infrared )- Therefore, in the following the term ATR as defined in Section 14.4.1 and illustrated with Figure 14.8 is used exclusively. [Pg.368]

However, other workers [45-47] have shown that the situation is not always so simple, and that for some adhesive systems the diffusion of water along the adhesive/substrate interface is far quicker than that through the bulk adhesive. Indeed, using an elegant Fourier-transform infrared multiple internal-reflection (FTIR-MIR) technique, Linossier et al. [47] not only demonsu-ated this aspect but also observed that the rate of interfacial diffusion of water was a function of the surface pretreatment used for the substrate prior to bonding. [Pg.683]

Attenuated total reflection (ATR) has grown into the most widely practiced technique in infrared spectrometry. The reasons for this are fairly straightforward the technique requires little or no sample preparation, and consistent results can be obtained with relatively little care or expertise. The technique is not foolproof, but it can be very forgiving. ATR spectrometry is known by a number of alternative names, for example, multiple internal reflection (MIR), which is not to be confused with mid-infrared, frustrated multiple internal reflection (FMIR), evanescent wave spectrometry (EWS), frustrated total internal reflection (FTIR), which is not the same as Fourier transform infrared (FT-IR) spectrometry, and internal reflection spectrometry (IRS), but IRS is better known, at least in the United States, as the Internal Revenue Service. [Pg.321]

Due to the fundamental importance of the adsorbed protein film, many methods have been used to characterize its nature. These methods include ellipsometry (3,A), Fourier transform infrared spectroscopy (FTIR) (5,6), multiple attenuated internal reflection spectroscopy (MAIR) (7,8) immunological labeling techniques (9), radioisotope labeled binding studies (j ), calorimetric adsorption studies (jj ), circular dichroism spectroscopy (CDS) (12), electrophoresis (j ), electron spectroscopy for chemical analysis (ESCA) (1 ), scanning electron microscopy (SEM) (15,16,9), and transmission electron microscopy (TEM) (17-19). [Pg.49]

Multiple block copolymers form a domain-matrix morphology due to the chemical and steric incompatibilities of the two chemically different blocks. The surface molecular and morphological structures of a series of block copolyether-urethane-ureas have been studied in detail via Electron Spectroscopy for Chemical Analysis (ESCA) and Fourier Transform Infrared Spectroscopy (FTIR) coupled with internal reflectance techniques. ESCA provides elemental information concerning the very surface, while FTIR provides the molecular and secondary bonding Information of the surface and into the bulk. Bulk and surface chemical and morphological structures are shown to be quite different, and are affected by synthetic and fabrication variables. [Pg.187]


See other pages where Fourier transform multiple internal reflectance is mentioned: [Pg.353]    [Pg.353]    [Pg.118]    [Pg.103]    [Pg.832]    [Pg.1157]    [Pg.349]    [Pg.769]    [Pg.166]    [Pg.113]    [Pg.3295]    [Pg.324]    [Pg.98]    [Pg.99]    [Pg.128]    [Pg.353]    [Pg.496]    [Pg.1196]   
See also in sourсe #XX -- [ Pg.353 , Pg.354 , Pg.361 ]




SEARCH



Internal reflectance

Internally reflected

MULTIPLE INTERNAL

Multiple internal reflections

Multiple reflections

Transformation reflection

© 2024 chempedia.info