Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Forces of solvation

The base resin contains a styrene-divinylbenzene polymer, DVB. If styrene alone were used, the long chains it formed would disperse in organic solvents. The divinylbenzene provides cross-linking between the chains. When the cross-linked structure is immersed in an organic solvent, dispersion takes place only to the point at which the osmotic force of solvation is balanced by the restraining force of the stretched polymer structure. [Pg.1054]

Since Ki is expressed as a ratio, any consistent measure of composition in the membrane and external phases may be used in Equation 7.2. When K> 1, the membrane acts as a concentrator that attracts component i from the external phase and makes it available at the membrane surface for transmembrane movement. Intermolecular forces of solvation and mixing that are responsible for the partitioning process may be entropic as well as enthalpic in origin. The balance of these forces acting between the membrane and external phase can cause either a higher or lower concentration of a given solute inside the membrane relative to the external phase. If the tendency to enter the membrane is negligible, the partition coefficient approaches zero, that is, Kj —> 0. [Pg.143]

These forces of solvation, which result from ionic interaction, hydrogen bonds, hydrophobic bonds, and other dipole-dipole attactions are important in biological studies not only because they dictate the rate at which any solute can pass through various lipid membranes but because they also influence binding to proteins, to serum albumin in transport throughout the body, and to enzyme surfaces (I). [Pg.57]

Coulombic interaction is a valence force between counterions, and in extreme situations a cation-anion pair might form a strong ion-dipole interaction in solution. Such interactions would tend to be major for ionic substances dissolved in non-polar solvent systems, but less so in polar solvents where the forces of solvation serve to disrupt ion pairs into individual solvated ions. These trends provide an insight into why salts tend to be soluble in polar solvents, but not in non-polar solvents. [Pg.15]

Theories of the visible structure of protoplasm are classical, not fundamental. The statement does not imply that visible structure should be ignored it plays a significant role in the metabolism of life, but it has no relation to basic structure of protoplasm. Advance in knowledge of the structure of living matter has been made in the ultramicroscopic not the microscopic field. Among newer concepts that of coacervates (34) has played a prominent role. According to Scarth (72), structural units of a coacer-vate are attracted by electrostatic forces and repelled by forces of solvation. [Pg.61]

As with SCRF-PCM only macroscopic electrostatic contribntions to the Gibbs free energy of solvation are taken into account, short-range effects which are limited predominantly to the first solvation shell have to be considered by adding additional tenns. These correct for the neglect of effects caused by solnte-solvent electron correlation inclnding dispersion forces, hydrophobic interactions, dielectric saturation in the case of... [Pg.838]

The well defined contact geometry and the ionic structure of the mica surface favours observation of structural and solvation forces. Besides a monotonic entropic repulsion one may observe superimposed periodic force modulations. It is commonly believed that these modulations are due to a metastable layering at surface separations below some 3-10 molecular diameters. These diflftise layers are very difficult to observe with other teclmiques [92]. The periodicity of these oscillatory forces is regularly found to correspond to the characteristic molecular diameter. Figure Bl.20.7 shows a typical measurement of solvation forces in the case of ethanol between mica. [Pg.1739]

Figure Bl.20.7. The solvation force of ethanol between mica surface. The inset shows the fiill scale of the experimental data. With pennission from [75]. Figure Bl.20.7. The solvation force of ethanol between mica surface. The inset shows the fiill scale of the experimental data. With pennission from [75].
PLS (partial least-squares) algorithm used for 3D QSAR calculations PM3 (parameterization method three) a semiempirical method PMF (potential of mean force) a solvation method for molecular dynamics calculations... [Pg.367]

In continuum boundary conditions the protein or other macromolecule is treated as a macroscopic body surrounded by a featureless continuum representing the solvent. The internal forces of the protein are described by using the standard force field including the Coulombic interactions in Eq. (6), whereas the forces due to the presence of the continuum solvent are described by solvation tenns derived from macroscopic electrostatics and fluid dynamics. [Pg.98]

M. Iwamatsu. A molecular theory of solvation force oscillations in nonpolar Uquids. J Colloid Interface Sci 204 374-388, 1998. [Pg.71]

C—X, Cf, X- and C+ fX (see Fig. 2), the solvation energy increasing the driving force of these dissociations. It is possible that a coordination catalyst is not active in the C—X state but only in one or other of the ionized states. Such behavior blurs the distinction between ionic and coordination polymerization. [Pg.162]

The inner layer (closest to the electrode), known as the inner Helmholtz plane (IHP), contains solvent molecules and specifically adsorbed ions (which are not hilly solvated). It is defined by the locus of points for the specifically adsorbed ions. The next layer, the outer Helmholtz plane (OHP), reflects the imaginary plane passing through the center of solvated ions at then closest approach to the surface. The solvated ions are nonspecifically adsorbed and are attracted to the surface by long-range coulombic forces. Both Helmholtz layers represent the compact layer. Such a compact layer of charges is strongly held by the electrode and can survive even when the electrode is pulled out of the solution. The Helmholtz model does not take into account the thermal motion of ions, which loosens them from the compact layer. [Pg.19]

Debye-Huckel theory assumes complete dissociation of electrolytes into solvated ions, and attributes ionic atmosphere formation to long-range physical forces of electrostatic attraction. The theory is adequate for describing the behaviour of strong 1 1 electrolytes in dilute aqueous solution but breaks down at higher concentrations. This is due to a chemical effect, namely that short-range electrostatic attraction occurs... [Pg.43]

Ions not solvated are unstable in solutions between them and the polar solvent molecules, electrostatic ion-dipole forces, sometimes chemical forces of interaction also arise which produce solvation. That it occurs can be felt from a number of effects the evolution of heat upon dilution of concentrated solutions of certain electrolytes (e.g., sulfuric acid), the precipitation of crystal hydrates upon evaporation of solutions of many salts, the transfer of water during the electrolysis of aqueous solutions), and others. Solvation gives rise to larger effective radii of the ions and thus influences their mobilities. [Pg.106]

D. J. Very empirical treatment of solvation and entropy a force field derived from Log Po/w J. Comput.-Aided Mol. Des. 2001, 15, 381-393. [Pg.404]

Fig. 2.5. Possible applications of a coupling parameter, A, in free energy calculations, (a) and (b) correspond, respectively, to simple and coupled modifications of torsional degrees of freedom, involved in the study of conformational equilibria (c) represents an intramolecular, end-to-end reaction coordinate that may be used, for instance, to model the folding of a short peptide (d) symbolizes the alteration of selected nonbonded interactions to estimate relative free energies, in the spirit of site-directed mutagenesis experiments (e) is a simple distance separating chemical species that can be employed in potential of mean force (PMF) calculations and (f) corresponds to the annihilation of selected nonbonded interactions for the estimation of e.g., free energies of solvation. In the examples (a), (b), and (e), the coupling parameter, A, is not independent of the Cartesian coordinates, x. Appropriate metric tensor correction should be considered through a relevant transformation into generalized coordinates... Fig. 2.5. Possible applications of a coupling parameter, A, in free energy calculations, (a) and (b) correspond, respectively, to simple and coupled modifications of torsional degrees of freedom, involved in the study of conformational equilibria (c) represents an intramolecular, end-to-end reaction coordinate that may be used, for instance, to model the folding of a short peptide (d) symbolizes the alteration of selected nonbonded interactions to estimate relative free energies, in the spirit of site-directed mutagenesis experiments (e) is a simple distance separating chemical species that can be employed in potential of mean force (PMF) calculations and (f) corresponds to the annihilation of selected nonbonded interactions for the estimation of e.g., free energies of solvation. In the examples (a), (b), and (e), the coupling parameter, A, is not independent of the Cartesian coordinates, x. Appropriate metric tensor correction should be considered through a relevant transformation into generalized coordinates...

See other pages where Forces of solvation is mentioned: [Pg.140]    [Pg.143]    [Pg.2042]    [Pg.874]    [Pg.47]    [Pg.20]    [Pg.140]    [Pg.143]    [Pg.2042]    [Pg.874]    [Pg.47]    [Pg.20]    [Pg.580]    [Pg.44]    [Pg.76]    [Pg.562]    [Pg.338]    [Pg.49]    [Pg.20]    [Pg.133]    [Pg.142]    [Pg.338]    [Pg.383]    [Pg.341]    [Pg.30]    [Pg.206]    [Pg.100]    [Pg.212]    [Pg.648]    [Pg.143]    [Pg.250]    [Pg.156]    [Pg.18]    [Pg.202]    [Pg.297]    [Pg.370]    [Pg.33]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Protein force fields free energies of aqueous solvation

Solvation force

© 2024 chempedia.info