Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Folic acid compounds structure

FIGURE 10.10 Structural formula of folic acid and related compounds. 1 — [3, 5, 7,9- H]folic acid (boldfaced letter H denotes radioactivity), 2 — pterine-6-carboxylic acid, 3 — /)-aminobenzoyl-L-glutamic acid. [Pg.248]

Donald Woods discovered that sulphonamides exerted their action by inhibiting an enzyme used by bacteria to synthesise folic acid. The compound 4-aminobenzoic acid is the precursor for folic acid, and is structurally similar to sulphonamide. Bacteria that were unable to synthesise folic acid were unable to achieve de novo synthesis of purines for their DNA and RNA synthesis and hence could not proliferate. Such competitive inhibitors, which mimicked normal metabolites, became known as antimetabolites (many are used in cancer chemotherapy. Chapter 21). [Pg.60]

Compared with other vitamins, the chemical structures of both folic acid and B12 are complex. They are prosthetic groups for the enzymes that catalyse the transfer of the methyl group (-CH3) between compounds (one-carbon metabolism). The -CH3 group is chemically unreactive, so that the chemistry for the transfers is difficult, requiring complex structures for catalysis. [Pg.334]

The structure of cobalamin is more complex than that of folic acid (Figure 15.2 and 15.3). At its heart is a porphyrin ring containing the metal ion cobalt at its centre. In catalytic reactions the cobalt ion forms a bond with the one-carbon group, which is then transferred from one compound to another. Vitamin B12 is the prosthetic group of only two enzymes, methylmalonyl-CoAmutase and methionine synthase. The latter enzyme is particularly important, as it is essential for the synthesis of nucleotides which indicates the importance of vitamin B12 in maintenance of good health. [Pg.334]

These three compounds exert many similar effects in nucleotide metabolism of chicks and rats [167]. They cause an increase of the liver RNA content and of the nucleotide content of the acid-soluble fraction in chicks [168], as well as an increase in rate of turnover of these polynucleotide structures [169,170]. Further experiments in chicks indicate that orotic acid, vitamin B12 and methionine exert a certain action on the activity of liver deoxyribonuclease, but have no effect on ribonuclease. Their effect is believed to be on the biosynthetic process rather than on catabolism [171]. Both orotic acid and vitamin Bu increase the levels of dihydrofolate reductase (EC 1.5.1.4), formyltetrahydrofolate synthetase and serine hydroxymethyl transferase in the chicken liver when added in diet. It is believed that orotic acid may act directly on the enzymes involved in the synthesis and interconversion of one-carbon folic acid derivatives [172]. The protein incorporation of serine, but not of leucine or methionine, is increased in the presence of either orotic acid or vitamin B12 [173]. In addition, these two compounds also exert a similar effect on the increased formate incorporation into the RNA of liver cell fractions in chicks [174—176]. It is therefore postulated that there may be a common role of orotic acid and vitamin Bj2 at the level of the transcription process in m-RNA biosynthesis [174—176]. [Pg.290]

Folic acid is vital for both humans and bacteria. Bacteria synthesize this compound, but humans are unable to synthesize it and, consequently, obtain the necessary amounts from the diet, principally from green vegetables and yeast. This allows selectivity of action. Therefore, sulfa drugs are toxic to bacteria because folic acid biosynthesis is inhibited, whereas they produce little or no ill effects in humans. The structural relationships between carboxylic acids and sulfonic acids that we have observed in rationalizing chemical reactivity are now seen to extend to some biological properties. [Pg.275]

A number of nitrogen heterocyclic, aromatic compounds, riboflavin 26, folic acid 27a and biopterin 27b, isolated from natural sources, are related in structure to natural redox enzyme cofactors. The electrochemistry of these and related compounds has been studied extensively. [Pg.252]

Sulfanilamides are antibiotics that serve as structural analogs of para-aminobenzoic acid (PABA), a substrate In the formation of folic acid by many bacteria. Substitution of the sulfanilamide compound In place of PABA In the reaction prevents formation of the critical coenzyme folic acid. [Pg.32]

Both sulfonamides and trimethoprim (not a sulfonamide) sequentially interfere with folic acid synthesis by bacteria. Folic acid functions as a coenzyme in the transfer of one-carbon units required for the synthesis of thymidine, purines, and some amino acids and consists of three components a pteridine moiety, PABA, and glutamate (Fig. 44.1). The sulfonamides, as structural analogues, competitively block PABA incorporation sulfonamides inhibit the enzyme dihydropteroate synthase, which is necessary for PABA to be incorporated into dihydropteroic acid, an intermediate compound in the formation of folinic acid. Since the sulfonamides reversibly block the synthesis of folic acid, they are bacteriostatic drugs. Humans cannot synthesize folic acid and must acquire it in the diet thus, the sulfonamides selectively inhibit microbial growth. [Pg.516]

As aromatic compounds have been exhausted as building blocks for life science products, A-heterocyclic structures prevail nowadays. They are found in many natural products, such as chlorophyll hemoglobin and the vitamins biotin (H), folic acid, niacin (PP), pyridoxine HCl (Be), riboflavine (B2), and thiamine (Bi). In life sciences 9 of the top 10 proprietary drugs and 5 of the top 10 agrochemicals contain A-heterocycIic moieties (see Tables 11.4 and 11.7). Even modern pigments, such as diphenylpyrazolopyrazoles, quinacri-dones, and engineering plastics, such as polybenzimidazoles, polyimides, and triazine resins, exhibit an A-heterocydic structure. [Pg.24]

The mode of action of sulfanilamides became known around 1947, when the structure and biosynthesis of folic acid were elucidated. This compound is built by bacteria from the heterocyclic pteroyl moiety, p-aminobenzoate, and glutamate. p-Aminobenzene-sulfonamide (9.89, sulfanilamide) is a competitive inhibitor of the synthase enzyme, acting as an antimetabolite of p-aminobenzoate. Occasionally, the sulfanilamide can even be incorporated into the modified folate, resulting in an inactive compound and thus an inactive enzyme. This theory, proposed by Woods and Fildes in 1940, became the first molecular explanation of drug action. [Pg.578]

The compound sulfanilamide exhibits a structural similarity to para-amino benzoic acid (PABA). Woods and Fields proposed the theory that sulfonamides, being structurally similar to PABA, inhibit bacterial folate synthetase so that folic acid is not formed which is needed for a number of metabolic reactions. Folic acid derived from PABA is essential for bacterial metabolism. Sulfonamides inhibit the enzyme folic acid synthetase which is... [Pg.305]

The active form of folic acid, tetrahydrofolic acid (THF), is produced from folate by dihydrofolate reductase in a two-step reaction requiring two moles of NADPH. The carbon unit carried by THF is bound to nitrogen N5 or N10, or to both N5 and N10. THF allows one-carbon compounds to be recognized and manipulated by biosynthetic enzymes. Figure 20.11 shows the structures of the various members of the THF family, and indicates the sources of the one-carbon units and the synthetic reactions in which the specific members participate. [Pg.265]

Sulfa drugs have a close structural resemblance to PABA. When taken by a person suffering from a bacterial infection, a sulfa drug is transformed by the body to the compound sulfanilamide, which attaches to the bacterial receptor sites designed for PABA, as shown in Figure 14.7, thereby preventing the synthesis of folic acid. Without folic acid, the bacteria soon die. The patient, however, because he or she receives folic acid from the diet, lives on. [Pg.485]

The antiscurvy (antiscorbutic) activity was called vitamin C, and when its structure became known it was called ascorbic acid. The fat-soluble factor preventing rickets was designated vitamin D. By 1922, it was recognized that another fat-soluble factor, vitamin E, is essential for full-term pregnancy in the rat. In the early 1930s vitamin K and the essential fatty acids were added to the list of fat-soluble vitamins. Study of the human blood disorders "tropical macrocytic anemia" and "pernicious anemia" led to recognition of two more water-soluble vitamins, folic acid and vitamin B12. The latter is required in minute amounts and was not isolated until 1948. Have all the vitamins been discovered Rats can be reared on an almost completely synthetic diet. However, there is the possibility that for good health humans require some as yet undiscovered compounds in our diet. Furthermore, it is quite likely that we receive some essential nutrients that we cannot synthesize from bacteria in our intestinal tracts. An example may be the pyrroloquinoline quinone (PQQ).e... [Pg.721]

Another group of inhibitors prevents nucleotide biosynthesis indirectly by depleting the level of intracellular tetrahydrofolate derivatives. Sulfonamides are structural analogs of p-aminobenzoic acid (fig. 23.19), and they competitively inhibit the bacterial biosynthesis of folic acid at a step in which p-aminobenzoic acid is incorporated into folic acid. Sulfonamides are widely used in medicine because they inhibit growth of many bacteria. When cultures of susceptible bacteria are treated with sulfonamides, they accumulate 4-carboxamide-5-aminoimidazole in the medium, because of a lack of 10-formyltetrahydrofolate for the penultimate step in the pathway to IMP (see fig. 23.10). Methotrexate, and a number of related compounds inhibit the reduction of dihydrofolate to tetrahydrofolate, a reaction catalyzed by dihydrofolate reductase. These inhibitors are structural analogs of folic acid (see fig. 23.19) and bind at the catalytic site of dihydrofolate reductase, an enzyme catalyzing one of the steps in the cycle of reactions involved in thymidylate synthesis (see fig. 23.16). These inhibitors therefore prevent synthesis of thymidylate in replicating... [Pg.551]


See other pages where Folic acid compounds structure is mentioned: [Pg.702]    [Pg.273]    [Pg.285]    [Pg.285]    [Pg.318]    [Pg.327]    [Pg.509]    [Pg.643]    [Pg.665]    [Pg.141]    [Pg.161]    [Pg.273]    [Pg.285]    [Pg.285]    [Pg.318]    [Pg.327]    [Pg.669]    [Pg.434]    [Pg.89]    [Pg.20]    [Pg.273]    [Pg.285]    [Pg.285]    [Pg.318]    [Pg.327]    [Pg.141]    [Pg.161]    [Pg.36]    [Pg.3216]    [Pg.45]    [Pg.8]    [Pg.87]    [Pg.134]    [Pg.235]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Folic

Folic acid

Folic acid compounds

Folic acid structure

© 2024 chempedia.info