Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Assembling the cathode

The electrolytic cells shown in Figures 2—7 represent both monopolar and bipolar types. The Chemetics chlorate cell (Fig. 2) contains bipolar anode/cathode assemblies. The cathodes are Stahrmet, a registered trademark of Chemetics International Co., and the anodes are titanium [7440-32-6]y Ti, coated either with ruthenium dioxide [12036-10-1]y Ru02, or platinum [7440-06-4], Pt—iridium [7439-88-5]y Ir (see Metal anodes). Anodes and cathodes are joined to carrier plates of explosion-bonded titanium and Stahrmet, respectively. Several individual cells electrically connected in series are associated with... [Pg.73]

A tandem DSSC was prepared by assembling the cathode with a N3-sensitised Ti02 anode (prepared using the P123-template in the same way) and the efficiency was 0.78% when illuminated through the cathode. The shape of the J-V curve was still S-shaped, however, since the currents from each side were still not matched. As for the device prepared by He et al., the /sc was substantially higher than that for the p-type... [Pg.176]

The concept of the reversed fuel cell, as shown schematically, consists of two parts. One is the already discussed direct oxidation fuel cell. The other consists of an electrochemical cell consisting of a membrane electrode assembly where the anode comprises Pt/C (or related) catalysts and the cathode, various metal catalysts on carbon. The membrane used is the new proton-conducting PEM-type membrane we developed, which minimizes crossover. [Pg.220]

The cell head is fabricated from a 2.54-cm steel plate and has separate compartments for fluorine and hydrogen. The oudet-gas manifolds, hydrogen fluoride feed and purge lines, and electrical connections are on top of the head. The gas separation skirt is made of Monel. An insulating gasket maintains the seal between the tank and the head. The anode assembly consists of 32 carbon blades bolted onto a copper bar, each of which contains three copper conductor posts. The cathode assembly consists of three vertical, 0.6-cm parallel steep plates. The plates surround the anode assembly and are supported by three steel posts which also serve as conductors. [Pg.126]

An expandable anode involves compression of the anode stmcture using cHps during cell assembly so as not to damage the diaphragm already deposited on the cathode (Eig. 3a). When the cathode is in position on the anode base, 3-mm diameter spacers are placed over the cathode and the cHps removed from the anode. The spring-actuated anode surfaces then move outward to bear on the spacers, creating a controlled 3-mm gap between anode and cathode (Eig. 3b). This design has also been appHed to cells for the production of sodium chlorate (22). [Pg.122]

Fig. 2. Downs cell A, the steel shell, contains the fused bath B is the fire-brick lining C, four cylindrical graphite anodes project upward from the base of the cell, each surrounded by D, a diaphragm of iron gau2e, and E, a steel cathode. The four cathode cylinders are joined to form a single unit supported on cathode arms projecting through the cell walls and connected to F, the cathode bus bar. The diaphragms are suspended from G, the collector assembly, which is supported from steel beams spanning the cell top. For descriptions of H—M, see text. Fig. 2. Downs cell A, the steel shell, contains the fused bath B is the fire-brick lining C, four cylindrical graphite anodes project upward from the base of the cell, each surrounded by D, a diaphragm of iron gau2e, and E, a steel cathode. The four cathode cylinders are joined to form a single unit supported on cathode arms projecting through the cell walls and connected to F, the cathode bus bar. The diaphragms are suspended from G, the collector assembly, which is supported from steel beams spanning the cell top. For descriptions of H—M, see text.
Design Principles An individual fuel cell will generate an electrical potential of about 1 V or less, as discussed above, and a current that is proportional to the external load demand. For practical apph-cations, the voltage of an individual fuel cell is obviously too small, and cells are therefore stacked up as shown in Fig. 27-61. Anode/ electrolyte/cathode assemblies are electrically connected in series by inserting a bipolar plate between the cathode of one cell and the anode of the next. The bipolar plate must be impervious to the fuel... [Pg.2410]

Protection currents of a few amperes are needed for the cathodic protection of assemblies of storage tanks or refuelling stations. In this case, electrical contact with grounded installations is the main problem. For cathodic protection, these contacts must be located and electrically separated. If this is not possible, then local cathodic protection should be installed (see Chapter 12). [Pg.294]

In general, lithium-ion batteries are assembled in the discharged state. That is, the cathode, for example LqCoC, is filly intercalated by lithium, while the anode (carbon) is completely empty (not charged by lithium). In the first charge the anode is polarized in the negative direction (electrons are inserted into the carbon) and lithium cations leave the cathode, enter the solution, and are inserted into the carbon anode. This first charge process is very complex. On the basis of many reports it is presented schematically [6, 74, 76] in Fig. 5. The reactions presented in Fig. 5 are also discussed in Sec. 6.2.1, 6.2.2 and 6.3.5. [Pg.432]

This presentation reports some studies on the materials and catalysis for solid oxide fuel cell (SOFC) in the author s laboratory and tries to offer some thoughts on related problems. The basic materials of SOFC are cathode, electrolyte, and anode materials, which are composed to form the membrane-electrode assembly, which then forms the unit cell for test. The cathode material is most important in the sense that most polarization is within the cathode layer. The electrolyte membrane should be as thin as possible and also posses as high an oxygen-ion conductivity as possible. The anode material should be able to deal with the carbon deposition problem especially when methane is used as the fuel. [Pg.95]

Although ORR catalysts for DMFCs are mostly identical to those for the PEM fuel cell, one additional and serious drawback in the DMFC case is the methanol crossover from the anode to the cathode compartment of the membrane electrode assembly, giving rise to simultaneous methanol oxidation at the cathode. The... [Pg.318]

FIGURE 12.1 Schematic depiction of a biocatalytic fuel cell, with fuel oxidation by a biocatalyst (Cat) at the anode and oxidant reduction by a biocatalyst (Cat ) at the cathode, in a membraneless assembly, providing power to the load. [Pg.411]

Besides the glass seal interfaces, interactions have also been reported at the interfaces of the metallic interconnect with electrical contact layers, which are inserted between the cathode and the interconnect to minimize interfacial electrical resistance and facilitate stack assembly. For example, perovskites that are typically used for cathodes and considered as potential contact materials have been reported to react with interconnect alloys. Reaction between manganites- and chromia-forming alloys lead to formation of a manganese-containing spinel interlayer that appears to help minimize the contact ASR [219,220], Sr in the perovskite conductive oxides can react with the chromia scale on alloys to form SrCr04 [219,221],... [Pg.198]

Figure 8.1 Exploded view of an electrophoresis cell. The components of the Bio-Rad Mini-PROTEAN 3 are shown. The inner chamber can hold one or two gels. It contains an electrode assembly and a clamping frame. The interior of the inner assembly constitutes the upper buffer compartment (usually the cathode compartment). The chamber is placed in the tank to which buffer is added. This constitutes the lower (anode) buffer compartment. Electrical contact is made through the lid. Figure 8.1 Exploded view of an electrophoresis cell. The components of the Bio-Rad Mini-PROTEAN 3 are shown. The inner chamber can hold one or two gels. It contains an electrode assembly and a clamping frame. The interior of the inner assembly constitutes the upper buffer compartment (usually the cathode compartment). The chamber is placed in the tank to which buffer is added. This constitutes the lower (anode) buffer compartment. Electrical contact is made through the lid.
Figure 8.12 Two types of electrotransfer apparatus. At the left a tank transfer cell is shown in an exploded view. The cassette (1) holds the gel (2) and transfer membrane (3) between buffer-saturated filter paper pads (4). The cassette is inserted vertically into the buffer-filled tank (5) between positive and negative electrodes (not shown). A lid with connectors and leads for applying electrical power is not shown. On the right side of the figure is shown an exploded view of a semidry transfer unit. The gel (5) and membrane (6) are sandwiched between buffer-saturated stacks of filter paper (4) and placed between the cathode assembly (3) and anode plate (7). A safety lid (1) attaches to the base (9). Power is applied through cables (8). Figure 8.12 Two types of electrotransfer apparatus. At the left a tank transfer cell is shown in an exploded view. The cassette (1) holds the gel (2) and transfer membrane (3) between buffer-saturated filter paper pads (4). The cassette is inserted vertically into the buffer-filled tank (5) between positive and negative electrodes (not shown). A lid with connectors and leads for applying electrical power is not shown. On the right side of the figure is shown an exploded view of a semidry transfer unit. The gel (5) and membrane (6) are sandwiched between buffer-saturated stacks of filter paper (4) and placed between the cathode assembly (3) and anode plate (7). A safety lid (1) attaches to the base (9). Power is applied through cables (8).

See other pages where Assembling the cathode is mentioned: [Pg.521]    [Pg.155]    [Pg.521]    [Pg.387]    [Pg.521]    [Pg.155]    [Pg.521]    [Pg.387]    [Pg.489]    [Pg.498]    [Pg.499]    [Pg.500]    [Pg.520]    [Pg.523]    [Pg.243]    [Pg.1172]    [Pg.168]    [Pg.515]    [Pg.4]    [Pg.117]    [Pg.414]    [Pg.325]    [Pg.302]    [Pg.354]    [Pg.162]    [Pg.413]    [Pg.426]    [Pg.427]    [Pg.429]    [Pg.570]    [Pg.586]    [Pg.303]    [Pg.243]    [Pg.434]    [Pg.182]    [Pg.184]    [Pg.411]    [Pg.74]   
See also in sourсe #XX -- [ Pg.387 ]




SEARCH



The Cathode

© 2024 chempedia.info