Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluoride importance

Another near resonant process is important in the hydrogen fluoride laser, equation (A3.13.37), where vibrational to vibrational energy transfer is of interest ... [Pg.1054]

The very low bond dissociation enthalpy of fluorine is an important factor contributing to the greater reactivity of fluorine. (This low energy may be due to repulsion between non-bonding electrons on the two adjacent fluorine atoms.) The higher hydration and lattice enthalpies of the fluoride ion are due to the smaller size of this ion. [Pg.313]

Fluorine occurs widely in nature as insoluble fluorides. Calcium fluoride occurs as jluospar or fluorite, for example in Derbyshire where it is coloured blue and called bluejohn . Other important minerals are cryolite NajAlFg (p. 141) and Jluorapatite CaFjSCaj (P04)2. Bones and teeth contain fluorides and some natural water contains traces. [Pg.316]

The bond dissociation energy of the hydrogen-fluorine bond in HF is so great that the above equilibrium lies to the left and hydrogen fluoride is a weak acid in dilute aqueous solution. In more concentrated solution, however, a second equilibrium reaction becomes important with the fluoride ion forming the complex ion HFJ. The relevant equilibria are ... [Pg.328]

Hydrogen fluoride is the most important compound of fluorine. It is prepared in the laboratory, and on the large scale, by the reaction of calcium fluoride with concentrated sulphuric acid. ... [Pg.329]

The only important compound is the paramagnetic silver(II) fluoride, AgFj, prepared by fluorination of the metal it is used as a convenient fluorinating agent. [Pg.427]

Beryllium is found in some 30 mineral species, the most important of which are bertrandite, beryl, chrysoberyl, and phenacite. Aquamarine and emerald are precious forms of beryl. Beryl and bertrandite are the most important commercial sources of the element and its compounds. Most of the metal is now prepared by reducing beryllium fluoride with magnesium metal. Beryllium metal did not become readily available to industry until 1957. [Pg.11]

Gadolinium is found in several other minerals, including monazite and bastnasite, both of which are commercially important. With the development of ion-exchange and solvent extraction techniques, the availability and prices of gadolinium and the other rare-earth metals have greatly improved. The metal can be prepared by the reduction of the anhydrous fluoride with metallic calcium. [Pg.187]

Torgov introduced an important variation of the Michael addition allylic alcohols are used as vinylogous a -synthons and 1,3-dioxo compounds as d -reagents (S.N. Ananchenko, 1962, 1963 H. Smith, 1964 C. Rufer) 1967). Mild reaction conditions have been successful in the addition of ],3-dioxo compounds to vinyl ketones. Potassium fluoride can act as weakly basic, non-nudeophilic catalyst in such Michael additions under essentially non-acidic and non-basic conditions (Y. Kitabara, 1964). [Pg.71]

Environmentally sound phosphate fertilizer plants recover as much of the fluoride value as H2SiFg as possible. Sales for production of AIF. -3H20 is one of the most important markets (see Fertilizers Phosphoric acid and the phosphates). [Pg.140]

Cryolite. Cryohte constitutes an important raw material for aluminum manufacturing. The natural mineral is accurately depicted as 3NaF AIF., but synthetic cryohte is often deficient in sodium fluoride. Physical properties are given in Table 4. [Pg.142]

Economic Aspects. Pertinent statistics on the U.S. production and consumption of fluorspar are given in Table 4. For many years the United States has rehed on imports for more than 80% of fluorspar needs. The principal sources are Mexico, China, and the Repubflc of South Africa. Imports from Mexico have declined in part because Mexican export regulations favor domestic conversion of fluorspar to hydrogen fluoride for export to the United States. [Pg.173]

The halogen fluorides are binary compounds of bromine, chlorine, and iodine with fluorine. Of the eight known compounds, only bromine trifluoride, chlorine trifluoride, and iodine pentafluoride have been of commercial importance. Properties and appHcations have been reviewed (1 7) as have the reactions with organic compounds (8). Reviews covering the methods of preparation, properties, and analytical chemistry of the halogen fluorides are also available (9). [Pg.184]

Rhenium also forms several important oxyfluorides rhenium oxytetrafluoride [17026-29-8], ReOF rhenium oxypentafluoride [23377-53-9], ReOF rhenium dioxytrifluoride [57246-89-6], Re02F2 and perrhenyl fluoride [25813-73-4], ReO F. AH are soHds at room temperature. Properties are summari2ed in Table 1. [Pg.233]

Three binary zirconium fluorides Zrp2, ZrF, and ZrF, are known to exist. The most important compounds industrially are zirconium tetrafluoride, ZrF, and fluorozirconic acid [12021 -95-3], H2ZrF, and its salts (see Zirconiumand zirconium compounds). [Pg.262]

TFEO is by fai the most reactive epoxide of the series. However, ail the reported perfluoroepoxides undergo similar ring-opening reactions. The most important reactions of these epoxides ate those with the fluoride ion or perfluoroalkoxides. The reaction of PIBO and the fluoride ion is an example (27). It also illustrates the general scheme of oligomerization of perfluoroepoxides (eq 5). [Pg.303]

Hexafluoropropylene Oxide HFPO is the most important of the perfluoroepoxides and has been synthesized by almost all of the methods noted. Many attempts have been made to polymerize HFPO (6,8). The most successful has been the reaction of HFPO with fluoride ion at low temperature to give a series of oligomeric acid fluorides which have been end capped to yield stable fluids (eq. 11, where X = H,F). [Pg.304]

Yields of sulfonyl fluorides prepared by ECF vary depending on the particular stmcture. Chain degradation becomes more important as the chain length kicreases (6). Yields can vary from 96% for perfluoromethanesulfonyl fluoride (7) to 43—50% for perfluorooctanesulfonyl fluoride (8). Trifluoromethanesulfonic acid can be prepared via trifluoromethanesulfenyl chloride as shown ki equations 5—7 (9). [Pg.314]

Alkyl esters of trifluoromethanesulfonic acid, commonly called triflates, have been prepared from the silver salt and an alkyl iodide, or by reaction of the anhydride with an alcohol (18,20,21). Triflates of the 1,1-dihydroperfluoroalkanols, CF2S020CH2R can be prepared by the reaction of perfluoromethanesulfonyl fluoride with the dihydroalcohol in the presence of triethylamine (22,23). Triflates are important intermediates in synthetic chemistry. They are among the best leaving groups known, so they are commonly employed in anionic displacement reactions. [Pg.315]

Chloro-2,4,6-trifluoropyrimidine [697-83-6] has gained commercial importance for the production of fiber-reactive dyes (465,466). It can be manufactured by partial fluoriaation of 2,3,5,6-tetrachloropyrimidine [1780-40-1] with anhydrous hydrogen fluoride (autoclave or vapor phase) (467) or sodium fluoride (autoclave, 300°C) (468). 5-Chloro-2,4,6-trifluoropyrimidine is condensed with amine chromophores to provide the... [Pg.340]

There is growing commercial importance and escalating scientific interest in PVDF. The World Patent database, including the United States, Hsts 678 patents that cite the term poly(vinyHdene fluoride) for the period 1963—1980 and 2052 patents for the period 1981—1992 Chemical Abstracts files covering the years 1967—1992 contain 5282 references for the same term. Thirty years ago there was only one commercial producer of PVDF in the world now there are two in the United States, two in Japan, and three in Europe. [Pg.385]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]


See other pages where Fluoride importance is mentioned: [Pg.40]    [Pg.182]    [Pg.359]    [Pg.2066]    [Pg.34]    [Pg.88]    [Pg.326]    [Pg.345]    [Pg.636]    [Pg.99]    [Pg.145]    [Pg.148]    [Pg.171]    [Pg.178]    [Pg.184]    [Pg.190]    [Pg.202]    [Pg.208]    [Pg.216]    [Pg.262]    [Pg.271]    [Pg.283]    [Pg.285]    [Pg.307]    [Pg.308]    [Pg.379]    [Pg.288]    [Pg.288]    [Pg.25]   
See also in sourсe #XX -- [ Pg.494 ]




SEARCH



© 2024 chempedia.info