Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluid flow measurement process industry

There are do2ens of flow meters available for the measurement of fluid flow (30). The primary measurements used to determine flow include differential pressure, variable area, Hquid level, electromagnetic effects, thermal effects, and light scattering. Most of the devices discussed herein are those used commonly in the process industries a few for the measurement of turbulence are also described. [Pg.109]

Measurement by Electromagnetic Effects. The magnetic flow meter is a device that measures the potential developed when an electrically conductive flow moves through an imposed magnetic field. The voltage developed is proportional to the volumetric flow rate of the fluid and the magnetic field strength. The process fluid sees only an empty pipe so that the device has a very low pressure drop. The device is useful for the measurement of slurries and other fluid systems where an accumulation of another phase could interfere with flow measurement by other devices. The meter must be installed in a section of pipe that is much less conductive than the fluid. This limits its appHcabiHty in many industrial situations. [Pg.110]

Time-Delay Compensation Time delays are a common occurrence in the process industries because of the presence of recycle loops, fluid-flow distance lags, and dead time in composition measurements resulting from use of chromatographic analysis. The presence of a time delay in a process severely hmits the performance of a conventional PID control system, reducing the stability margin of the closed-loop control system. Consequently, the controller gain must be reduced below that which could be used for a process without delay. Thus, the response of the closed-loop system will be sluggish compared to that of the system with no time delay. [Pg.733]

Thermal Mass Flowmeters The trend in the chemical process industries is toward increased usage of mass flowmeters that are independent of changes in pressure, temperature, viscosity, and density. Thermal mass meters are widely used in semiconductor manufacturing and in bioprocessing for control of low flow rates (called mass flow controllers, or MFCs). MFCs measure the heat loss from a heated element, which varies with flow rate, with an accuracy of 1 percent. Capacitance probes measure the dielectric constant of the fluid and are useful for flow measurements of slurries and other two-phase flows. [Pg.60]

Gas flow processes through microporous materials are important to many industrial applications involving membrane gas separations. Permeability measurements through mesoporous media have been published exhibiting a maximum at some relative pressure, a fact that has been attributed to the occurrence of capillary condensation and the menisci formed at the gas-liquid interface [1,2]. Although, similar results, implying a transition in the adsorbed phase, have been reported for microporous media [3] and several theoretical studies [4-6] have been carried out, a comprehensive explanation of the static and dynamic behavior of fluids in micropores is yet to be given, especially when supercritical conditions are considered. Supercritical fluids attract, nowadays, both industrial and scientific interest, due to their unique thermodynamic properties at the vicinity of the critical point. For example supercritical CO2 is widely used in industry as an extraction solvent as well as for chemical... [Pg.545]

The first part of the chapter deals with the transportation of fluids, both liquids and gases. Solids are sometimes handled by similar methods by suspending them in a liquid to form a pumpable slurry or by conveying them in a high-velocity gas stream, It is cheaper to move fluids than solids, and materials are transported as fluids whenever possible. In the process industries, fluids are nearly always carried in closed channels sometimes square or rectangular in cross section but much more often circular. The second part of the chapter discusses common methods of measuring flow rate. [Pg.181]

Particle-fluid flow has been in existence in industrial processes since the nineteenth century. Applications include pneumatic conveying, which deals with pipe flow of solid material transported by a gas, slurry transport and processing of solids in a fluid. The necessity of predicting blower or pumping power for a given amount of material to be conveyed led to measurements of pressure drops and attempts in the correlation of physical parameters. That anomaly exists in the correlation in terms of simple parameter is one of the motivations for the exploration into the details of distributions in density and velocity and the present state of development of instrumentation. [Pg.409]

It is concluded that once these types of traceability chains are produced so as to link flow measurement laboratories within and across national borders and boundaries, satisfactory fluid measurements can be achieved at specified levels. In this manner, the increasingly critical and costly measurements of gas resources and products can occur satisfactorily in custody transfers and in industrial processes. [Pg.162]

Whereas the transport of water to major centers allowed civilizations to flourish, the measurement and control of fluid flow has been a critical aspect of the development of industrial processes. Not only is metering flow important to maintaining stable and safe operating conditions, it is the prime means to account for the raw materials consumed and the finished products manufactured. While pressure and temperature are critical operating parameters for plant safety, the measurement of flow rate has a direct impact on process economics. For basic chemicals (as opposed to specialty chemicals or pharmaceuticals) like ethylene, propylene, methanol, sulfuric acid, etc. profit margins are relatively low and volumes are large, so high precision instruments are required to ensure the economic viability of the process. [Pg.195]

Most of the studies on heat transfer, with fluids have been done with Newtonian fluids. However, a wide variety of non-Newtonian fluids are encountered in the industrial chemical, biological, and food processing industries. To design equipment to handle these fluids, the flow property constants (rheological constants) must be available or must be measured experimentally. Section 3.5 gave a detailed discussion of rheological constants for non-Newtonian fluids. Since many non-Newtonian fluids have high effective viscosities, they are often in laminar flow. Since the majority of non-Newtonian fluids are pseudoplastic fluids, which can usually be represented by the power law, Eq. (3.5-2), the discussion will be concerned with such fluids. For other fluids, the reader is referred to Skelland (S3). [Pg.297]

Because of their complex structure the mechanical behavior of polymeric materials is not well described by the classical constitutive equations Hooke s law (for elastic solids) or Newton s law (for viscous liquids). Polymeric materials are said to be viscoelastic inasmuch as they exhibit both viscous and elastic responses. This viscoelastic behavior has played a key role in the development of the understanding of polymer structure. Viscoelasticity is also important in the understanding of various measuring devices needed for rheometric measurements. In the fluid dynamics of polymeric liquids, viscoelasticity also plays a crucial role. " Also in the polymer-processing industry it is necessary to include the role of viscoelastic behavior in careful analysis and design. Finally there are important connections between viscoelasticity and flow birefringence. ... [Pg.238]

A wide variety of nonnewtonian fluids are encountered industrially. They may exhibit Bingham-plastic, pseudoplastic, or dilatant behavior and may or may not be thixotropic. For design of equipment to handle or process nonnewtonian fluids, the properties must usually be measured experimentally, since no generahzed relationships exist to pi e-dicl the properties or behavior of the fluids. Details of handling nonnewtonian fluids are described completely by Skelland (Non-Newtonian Flow and Heat Transfer, Wiley, New York, 1967). The generalized shear-stress rate-of-strain relationship for nonnewtonian fluids is given as... [Pg.565]


See other pages where Fluid flow measurement process industry is mentioned: [Pg.6]    [Pg.1039]    [Pg.1042]    [Pg.58]    [Pg.239]    [Pg.402]    [Pg.485]    [Pg.1637]    [Pg.279]    [Pg.162]    [Pg.252]    [Pg.761]    [Pg.58]    [Pg.148]    [Pg.224]    [Pg.3416]    [Pg.519]    [Pg.1926]    [Pg.281]    [Pg.2140]    [Pg.321]    [Pg.325]    [Pg.358]    [Pg.98]    [Pg.318]    [Pg.189]    [Pg.489]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Flow measurement

Flow measurements flowing fluid

Flow measuring

Fluid process

Industrial fluids

Industry fluid

Process flow

Process flow measurement

Process flow processing

Process measures

© 2024 chempedia.info