Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sequential modular flowsheet simulation

Sequential modular. Refers to the process simulator being based on modules, and the modules solved in a sequential precedence order imposed by the flowsheet information flow. [Pg.524]

The older modular simulation mode, on the other hand, is more common in commerical applications. Here process equations are organized within their particular unit operation. Solution methods that apply to a particular unit operation solve the unit model and pass the resulting stream information to the next unit. Thus, the unit operation represents a procedure or module in the overall flowsheet calculation. These calculations continue from unit to unit, with recycle streams in the process updated and converged with new unit information. Consequently, the flow of information in the simulation systems is often analogous to the flow of material in the actual process. Unlike equation-oriented simulators, modular simulators solve smaller sets of equations, and the solution procedure can be tailored for the particular unit operation. However, because the equations are embedded within procedures, it becomes difficult to provide problem specifications where the information flow does not parallel that of the flowsheet. The earliest modular simulators (the sequential modular type) accommodated these specifications, as well as complex recycle loops, through inefficient iterative procedures. The more recent simultaneous modular simulators now have efficient convergence capabilities for handling multiple recycles and nonconventional problem specifications in a coordinated manner. [Pg.208]

The computational architecture is a sequential modular approach with advanced features. To model a process, each equipment module is simulated by a program module. The overall process is simulated by connecting the models together in the same way as the equipment in the flow sheet. When the input streams are known then the outputs can be calculated. The entire flowsheet can be calculated "sequentially" in this manner. Advanced features are discussed below in connection with an example. [Pg.291]

Process design for continuous processes is carried out mostly using steady-state simulators. In steady-state process simulation, individual process units or entire floivsheets are calculated, such that there are no time deviations of variables and parameters. Most of the steady-state floivsheet simulators use a sequential modular approach in which the flowsheet is broken into small units. Since each unit is solved separately, the flowsheet is worked through sequentially and iteration is continued until the entire flowsheet is converged. Another way to solve the flowsheet is to use the equation oriented approach, where the flowsheet is handled as a large set of equations, which are solved simultaneously. [Pg.25]

Clearly define, in your own words, the terms design variables and state variables, sequential modular flowsheet simulation, equation-based flowsheet simulation, tear stream, convergence block, and design specification. [Pg.504]

Ihese difficulties vanish if the system equations are simply collected and solved for all unknown variables. Several powerful equation-solving algorithms are available in commercial programs like Maple , Mathematica , Matlab , Mathcad , and E-Z Solve that make the equation-based approach competitive with the sequential modular approach. Many researchers in the field believe that as this trend continues, the former approach will replace the latter one as the standard method for flowsheet simulation. (Engineers are also working on simultaneous modular methods, which combine features of both sequential modular and equation-based approaches. We will not deal with these refinements here, however.)... [Pg.523]

Equation-based flowsheet simulators have not reached the level of commercialization of their sequential modular counterparts as of the time of this writing, and the development of efficient equation-solving algorithms is the subject of much continuing research. [Pg.533]

For a sequential-modular simulation program to be able to solve a flowsheet with a recycle, the design engineer needs to provide an initial estimate of a stream somewhere in the recycle loop. This is known as a tear stream, as the loop is torn at that point. The program can then solve and update the tear stream values with a new estimate. The procedure is repeated until the difference between values at each iteration becomes less than a specified tolerance, at which point the flowsheet is said to be converged to a solution. [Pg.207]

The two basic flowsheet software architectures are sequential modular and equation-based. In sequential modular, we write each unit model so that it calculates output(s), given feed(s), and unit parameters. This is the most commonly used flowsheeting architecture at present, and examples include Aspen+ plus Hysys (AspenTech), ChemCAD, and PROll (SimSci). In equation-based (or open-system) architectures, all equations are written describing material and energy balances as algebraic equations in the form/(x) = 0. This is the preferred architecture for new simulators and optimization, and examples include Speedup (AspenTech) and gPROMS (PSE pic). Each is discussed in turn. [Pg.1338]

More recant efforts to develop computer-aided process synthesis methodologies can be cbeincterized as either sequential modular, simultaneous modular, or equation oriented, Sequeatial-modular approaches are ben for steady-state simulation where process inputs are defined and process para met ara ate available. The best feature of sequential-modular approaches is that they are flowsheet oriented, bot they are not as flexible as the other methodologies in parfonuing design and optimization tasks.39... [Pg.217]

It may be concluded that Sequential-Modular approach keeps a dominant position in steady state simulation. The Equation-Oriented approach has proved its potential in dynamic simulation, and real time optimisation. The solution for the future generations of flowsheeting software seems to be a fusion of these strategies. The release 11.1 of Aspen Plus (2002) incorporates for the first time EO features in the environment of a SM simulator. [Pg.47]

Sequential-Modular approach is mostly used in steady state flowsheeting, among we may cite as major products Aspen Plus, ChemCad, Hysys, ProII, Prosim, and Winsim (see Table 2.2 for information). However, there are some dynamic simulators built on this architecture, the most popular being Hysys. [Pg.47]

Flowsheeting is still dominated by the Sequential-Modular architecture, but incorporates increasingly features of the Equation-Oriented solution mode. A limited number of systems can offer both steady state and dynamic flowsheeting simulators. [Pg.58]

Sequential modular approach has some clear advantages for process flowsheeting that explain why it still dominates the technology of steady-state simulation over the simultaneous or equation-oriented approach. Table 8.2 shows a list of pros and cons about sequential modular process simulators. In order to cope with the disadvantages, a few process simulators have improved the flow of information and avoid redundant computations. As an example, Aspen HYSYS has implemented the bidirectional transmission of information technology. [Pg.297]


See other pages where Sequential modular flowsheet simulation is mentioned: [Pg.133]    [Pg.46]    [Pg.103]    [Pg.295]    [Pg.296]    [Pg.409]    [Pg.1011]    [Pg.539]   
See also in sourсe #XX -- [ Pg.511 ]




SEARCH



Flowsheet

Flowsheet simulation

Flowsheet simulators

Flowsheeting

Flowsheets

Modular

Modularity

Modularization

Sequential modular

Sequential modular flowsheeting

Sequential modular simulator

© 2024 chempedia.info