Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flame retardants examples

Nonflame-retardant systems are polymeric systems that inherently have some level of flame retardance and therefore do not require additive or reactive flame retardants. Examples include PVC and its compounds, poly(vinylidene chloride) films and compounds, phenolic foams, amide-imides, polysul-fones, and poly(aryl sulfides). [Pg.251]

Inorganic salts are likewise active as flame retardants. Examples are shown in Table 7.6. [Pg.76]

An example of a commercial semibatch polymerization process is the early Union Carbide process for Dynel, one of the first flame-retardant modacryhc fibers (23,24). Dynel, a staple fiber that was wet spun from acetone, was introduced in 1951. The polymer is made up of 40% acrylonitrile and 60% vinyl chloride. The reactivity ratios for this monomer pair are 3.7 and 0.074 for acrylonitrile and vinyl chloride in solution at 60°C. Thus acrylonitrile is much more reactive than vinyl chloride in this copolymerization. In addition, vinyl chloride is a strong chain-transfer agent. To make the Dynel composition of 60% vinyl chloride, the monomer composition must be maintained at 82% vinyl chloride. Since acrylonitrile is consumed much more rapidly than vinyl chloride, if no control is exercised over the monomer composition, the acrylonitrile content of the monomer decreases to approximately 1% after only 25% conversion. The low acrylonitrile content of the monomer required for this process introduces yet another problem. That is, with an acrylonitrile weight fraction of only 0.18 in the unreacted monomer mixture, the low concentration of acrylonitrile becomes a rate-limiting reaction step. Therefore, the overall rate of chain growth is low and under normal conditions, with chain transfer and radical recombination, the molecular weight of the polymer is very low. [Pg.279]

In order for a soHd to bum it must be volatilized, because combustion is almost exclusively a gas-phase phenomenon. In the case of a polymer, this means that decomposition must occur. The decomposition begins in the soHd phase and may continue in the Hquid (melt) and gas phases. Decomposition produces low molecular weight chemical compounds that eventually enter the gas phase. Heat from combustion causes further decomposition and volatilization and, therefore, further combustion. Thus the burning of a soHd is like a chain reaction. For a compound to function as a flame retardant it must intermpt this cycle in some way. There are several mechanistic descriptions by which flame retardants modify flammabiUty. Each flame retardant actually functions by a combination of mechanisms. For example, metal hydroxides such as Al(OH)2 decompose endothermically (thermal quenching) to give water (inert gas dilution). In addition, in cases where up to 60 wt % of Al(OH)2 may be used, such as in polyolefins, the physical dilution effect cannot be ignored. [Pg.465]

Protective Coatings. Some flame retardants function by forming a protective Hquid or char barrier. These minimize transpiration of polymer degradation products to the flame front and/or act as an insulating layer to reduce the heat transfer from the flame to the polymer. Phosphoms compounds that decompose to give phosphoric acid and intumescent systems are examples of this category (see Flame retardants, phosphorus flame retardants). [Pg.465]

Brominated Additive Flame Retardants. Additive flame retardants are those that do not react in the appHcation designated. There are a few compounds that can be used as an additive in one appHcation and as a reactive in another. Tetrabromobisphenol A [79-94-7] (TBBPA) is the most notable example. Tables 5 and 6 Hst the properties of most commercially available bromine-containing additive flame retardants. [Pg.467]

A series of compounded flame retardants, based on finely divided insoluble ammonium polyphosphate together with char-forming nitrogenous resins, has been developed for thermoplastics (52—58). These compounds are particularly useful as iatumescent flame-retardant additives for polyolefins, ethylene—vinyl acetate, and urethane elastomers (qv). The char-forming resin can be, for example, an ethyleneurea—formaldehyde condensation polymer, a hydroxyethylisocyanurate, or a piperazine—triazine resin. [Pg.476]

Effects on Visible Smoke. Smoke is a main impediment to egress from a burning building. Although some examples are known where specific phosphoms flame retardants increased smoke in small-scale tests, other instances are reported where the presence of the retardant reduced smoke. The effect appears to be a complex function of burning conditions and of other ingredients in the formulation (153,156,157). In a carehil Japanese study, ammonium phosphate raised or lowered the smoke from wood depending on pyrolysis temperature (158). Where the phosphoms flame retardant functions by char enhancement, lower smoke levels are likely to be observed. [Pg.481]

Dehydration or Chemical Theory. In the dehydration or chemical theory, catalytic dehydration of ceUulose occurs. The decomposition path of ceUulose is altered so that flammable tars and gases are reduced and the amount of char is increased ie, upon combustion, ceUulose produces mainly carbon and water, rather than carbon dioxide and water. Because of catalytic dehydration, most fire-resistant cottons decompose at lower temperatures than do untreated cottons, eg, flame-resistant cottons decompose at 275—325°C compared with about 375°C for untreated cotton. Phosphoric acid and sulfuric acid [8014-95-7] are good examples of dehydrating agents that can act as efficient flame retardants (15—17). [Pg.485]

Nondurable Finishes. Flame-retardant finishes that are not durable to launderiag and bleaching are, ia general, relatively iaexpensive and efficient (23). In some cases, a mixture of two or more salts is more effective than either of the components alone. For example, an add-on of 60% borax (sodium tetraborate) is required to prevent fabric from burning, and boric acid is iaeffective as a flame retardant even at levels equal to the weight of the fabric. However, a mixture of seven parts borax and three parts boric acid imparts flame resistance to a fabric with as Utde as 6.5% add-on. [Pg.486]

MixedPhosphona.te Esters. Unsaturated, mixed phosphonate esters have been prepared from monoesters of 1,4-cyclohexanedimethanol and unsaturated dicarboxyhc acids. Eor example, maleic anhydride reacts with this diol to form the maleate, which is treated with benzenephosphonic acid to yield an unsaturated product. These esters have been used as flame-retardant additives for thermoplastic and thermosetting resias (97). [Pg.374]

Although phosphine [7803-51-2] was discovered over 200 years ago ia 1783 by the French chemist Gingembre, derivatives of this toxic and pyrophoric gas were not manufactured on an industrial scale until the mid- to late 1970s. Commercial production was only possible after the development of practical, economic processes for phosphine manufacture which were patented in 1961 (1) and 1962 (2). This article describes both of these processes briefly but more focus is given to the preparation of a number of novel phosphine derivatives used in a wide variety of important commercial appHcations, for example, as flame retardants (qv), flotation collectors, biocides, solvent extraction reagents, phase-transfer catalysts, and uv photoinitiators. [Pg.317]

Flame Retardants. Because PVC contains nearly half its weight of chlorine, it is inherently flame-retardant. Not only is chlorine not a fuel, but it acts chemically to inhibit the fast oxidation in the gas phase in a flame. When PVC is diluted with combustible materials, the compound combustibiHty is also increased. Por example, plastici2ed PVC with > 30% plastici2er may require a flame retardant such as antimony oxide, a phosphate-type plastici2er, or chlorinated or brominated hydrocarbons (145,146). [Pg.505]

PEI polymers exhibit minimal creep underload. Eor example, unreinforced Ultem 1000 maintains part dimensions over thousands of hours at room temperature at a loading of 34 N/mm (4930 psi). PEI resins are available with HDTs ranging to 220°C (Ultem 5000). PEI copolymers with siUcone mbber allow for flame-retardant, high temperature appHcations such as plenum wire coatings (Siltem). Reinforcement of PEI resins improves their temperature performance. Table 13 compares unreinforced and 20% glass-reinforced Ultem resins. [Pg.273]

In recent years there has been an increased demand for a variety of special ABS grades, for example products with improved flame retardancy. Improvements in flame retardancy have been met in two ways ... [Pg.444]

In 1826 J. J. Berzelius found that acidification of solutions containing both molybdate and phosphate produced a yellow crystalline precipitate. This was the first example of a heteropolyanion and it actually contains the phos-phomolybdate ion, [PMoi204o] , which can be used in the quantitative estimation of phosphate. Since its discovery a host of other heteropolyanions have been prepared, mostly with molybdenum and tungsten but with more than 50 different heteroatoms, which include many non-metals and most transition metals — often in more than one oxidation state. Unless the heteroatom contributes to the colour, the heteropoly-molybdates and -tungstates are generally of varying shades of yellow. The free acids and the salts of small cations are extremely soluble in water but the salts of large cations such as Cs, Ba" and Pb" are usually insoluble. The solid salts are noticeably more stable thermally than are the salts of isopolyanions. Heteropoly compounds have been applied extensively as catalysts in the petrochemicals industry, as precipitants for numerous dyes with which they form lakes and, in the case of the Mo compounds, as flame retardants. [Pg.1014]

Polyphosphonates are well-known flame-retardant materials [110] and are generally prepared by melt [111,112], interfacial [113-115] and solution polycondensation methods [116]. A typical example of synthesis is the polycondensation of bifunctional organophosphorus compounds, such as dichlorophenylphosphine oxide, with bisphenols [117,118]. [Pg.46]

The processing heat stability of most fire retardant plastics is lower than that of non-retarded plastics. Some compromises between processing heat stability and flame-retardancy are demonstrated in the following examples ... [Pg.323]

However this solution is not always convenient and may prevent high productivity and/or the production of intricate forms which require high temperature processing. Fortunately, some fire retardants dramatically increase the flowability of fire retardant plastics melts. For example ABS, flame retarded with F-2016 or F-2016M (brominated epoxy) has much higher flowability, melt flow index (MFI), and spiral flow index, than virgin ABS (Fig. 1). [Pg.326]

It should be mentioned that fire retardant-polypropylene has higher impact energy than polypropylene without HBCD and this improved impact energy resulting from the addition of fire retardant is a rare phenomenon. Usually the addition (15-25%) of low molecular components decreases the high impact properties of plastics although we know that HIPS flame-retarded with decabromodiphenyl oxide (DECA), for example, has almost the same impact energy as non-retarded HIPS (Table 5). [Pg.330]

On this basis, five classes of different polyphosphazenes are considered as outstanding examples of this type of macromolecules, in which skeletal and substituent features overlap to the highest extent. The reported materials are elastomers, flame retardants and self-extinguishing macromolecules, polymeric ionic conductors, biomaterials, and photosensitive polymeric compounds all of them based on the polyphosphazene structure. [Pg.229]


See other pages where Flame retardants examples is mentioned: [Pg.314]    [Pg.200]    [Pg.44]    [Pg.149]    [Pg.314]    [Pg.200]    [Pg.44]    [Pg.149]    [Pg.349]    [Pg.485]    [Pg.485]    [Pg.327]    [Pg.300]    [Pg.58]    [Pg.527]    [Pg.440]    [Pg.371]    [Pg.266]    [Pg.269]    [Pg.12]    [Pg.518]    [Pg.38]    [Pg.343]    [Pg.457]    [Pg.120]    [Pg.388]    [Pg.95]    [Pg.554]    [Pg.193]    [Pg.40]    [Pg.65]    [Pg.489]    [Pg.276]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Examples of flame retardants

Examples of flame-retardant grade properties

© 2024 chempedia.info