Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Field solid surfaces

In recent years, advances in experimental capabilities have fueled a great deal of activity in the study of the electrified solid-liquid interface. This has been the subject of a recent workshop and review article [145] discussing structural characterization, interfacial dynamics and electrode materials. The field of surface chemistry has also received significant attention due to many surface-sensitive means to interrogate the molecular processes occurring at the electrode surface. Reviews by Hubbard [146, 147] and others [148] detail the progress. In this and the following section, we present only a brief summary of selected aspects of this field. [Pg.202]

The tenn tribology translates literally into the study of nibbing . In modem parlance this field is held to include four phenomena adhesion, friction, lubrication and wear. For the most part these are phenomena that occur between pairs of solid surfaces in contact with one another or separated by a thin fluid film. Adhesion describes the resistance to separation of two surfaces in contact to while friction describes their tendency to resist shearing. Lubrication is the phenomenon of friction reduction by the presence of a fluid (or solid) film between two surfaces. Finally, w>ear describes the irreversible damage or defonnation that occurs as a result of shearing or separation. [Pg.2740]

Though a porous medium may be described adequately under non-reactive conditions by a smooth field type of diffusion model, such as one of the Feng and Stewart models, it does not necessarily follow that this will still be the case when a chemical reaction is catalysed at the solid surface. In these circumstances the smooth field assumption may not lead to appropriate expressions for concentration gradients, particularly in the smaller pores. Though the reason for this is quite simple, it appears to have been largely overlooked,... [Pg.77]

Field desorption. The formation of ions in the gas phase from a material deposited on a solid surface (known as an emitter) that is placed in a high electrical field. Field desorption is an ambiguous term because it implies that the electric field desorbs a material as an ion from some kind of emitter on which the material is deposited. There is growing evidence that some of the ions formed are due to thermal ionization and some to field ionization of material... [Pg.438]

Natural convection occurs when a solid surface is in contact with a fluid of different temperature from the surface. Density differences provide the body force required to move the flmd. Theoretical analyses of natural convection require the simultaneous solution of the coupled equations of motion and energy. Details of theoretical studies are available in several general references (Brown and Marco, Introduction to Heat Transfer, 3d ed., McGraw-HiU, New York, 1958 and Jakob, Heat Transfer, Wiley, New York, vol. 1, 1949 vol. 2, 1957) but have generally been applied successfully to the simple case of a vertical plate. Solution of the motion and energy equations gives temperature and velocity fields from which heat-transfer coefficients may be derived. The general type of equation obtained is the so-called Nusselt equation hL I L p gp At cjl... [Pg.559]

Other fields of surface study were of course developing the study of catalysts for the chemical industry and the study of friction and lubrication of solid surfaces were two such fields. But in sheer terms of economic weight, solid-state electronics seems to have led the field. [Pg.404]

The effects due to the finite size of crystallites (in both lateral directions) and the resulting effects due to boundary fields have been studied by Patrykiejew [57], with help of Monte Carlo simulation. A solid surface has been modeled as a collection of finite, two-dimensional, homogeneous regions and each region has been assumed to be a square lattice of the size Lx L (measured in lattice constants). Patches of different size contribute to the total surface with different weights described by a certain size distribution function C L). Following the basic assumption of the patchwise model of surface heterogeneity [6], the patches have been assumed to be independent one of another. [Pg.269]

We believe that better understanding of the behavior of macromolecules at the solid surfaces will facilitate further progress in chemical design of the composite sorbents as well as other bioseparation media such as membranes, fibers etc. and their application in various fields. [Pg.136]

Adsorption is one of the primary components of surfactant effectiveness. Surfactants are adsorbed on interfaces of the aqueous solution. That may be another solution which is immiscible with water, a gas phase, or a solid surface. Solid surfaces in particular are significantly altered by the adsorption of surface-active agents. Hence this effect is used in many fields. [Pg.607]

Due to the interdisciplinary nature of electrochemical promotion, which involves elementary but important concepts from at least five different fields (catalysis, surface science, electrochemistry, solid state ionics, chemical reaction engineering) we have structured the book in such a way to make it possible for readers from all the above fields to follow the entire book. [Pg.10]

There is a significant scatter between the values of the Poiseuille number in micro-channel flows of fluids with different physical properties. The results presented in Table 3.1 for de-ionized water flow, in smooth micro-channels, are very close to the values predicted by the conventional theory. Significant discrepancy between the theory and experiment was observed in the cases when fluid with unknown physical properties was used (tap water, etc.). If the liquid contains even a very small amount of ions, the electrostatic charges on the solid surface will attract the counter-ions in the liquid to establish an electric field. Fluid-surface interaction can be put forward as an explanation of the Poiseuille number increase by the fluid ionic coupling with the surface (Brutin and Tadrist 2003 Ren et al. 2001 Papautsky et al. 1999). [Pg.129]

Solid-surface room-temperature phosphorescence (RTF) is a relatively new technique which has been used for organic trace analysis in several fields. However, the fundamental interactions needed for RTF are only partly understood. To clarify some of the interactions required for strong RTF, organic compounds adsorbed on several surfaces are being studied. Fluorescence quantum yield values, phosphorescence quantum yield values, and phosphorescence lifetime values were obtained for model compounds adsorbed on sodiiun acetate-sodium chloride mixtures and on a-cyclodextrin-sodium chloride mixtures. With the data obtained, the triplet formation efficiency and some of the rate constants related to the luminescence processes were calculated. This information clarified several of the interactions responsible for RTF from organic compounds adsorbed on sodium acetate-sodium chloride and a-cyclodextrin-sodium chloride mixtures. Work with silica gel chromatoplates has involved studying the effects of moisture, gases, and various solvents on the fluorescence and phosphorescence intensities. The net result of the study has been to improve the experimental conditions for enhanced sensitivity and selectivity in solid-surface luminescence analysis. [Pg.155]

Solid-surface luminescence analysis is a useful approach for organic trace analysis because of its simplicity, sensitivity, and selectivity. It will continue to be used in environmental analysis and other areas not only for the reasons mentioned above but also because it is readily adaptable to field work. By developing a fundamental understanding of the interactions responsible for strong RTF and RTF signals, the advantages and disadvantages of the luminescence approach will be more specifically defined in the future. [Pg.165]

There is considerable experimental evidence indicating loss of biological activity of macromolecules such as globular proteins and enzymes at gas-Hquid [57], liquid-solid (Fig. 26) [107] and liquid-liquid [108] interfaces. The extent of inactivation has been shown to be strongly influenced by the prevailing flow field and by, many other factors including the presence and/or absence of additives and contaminants and the type of solid surfaces (Figs. 27 and 28) [107]. [Pg.114]

A large number of potential applications for organized protein monolayers have recently motivated considerable research activity in this field (Boussaad et al. 1998, Kiselyova et al. 1999). Construction of specific interaction-directed, self-assembled protein films has been performed at the air-water interface. The Langmuir-Blodgett (LB) technique has been extensively used to order and immobilize natural proteins on solid surfaces (Tronin et... [Pg.143]

Thin film coatings of nanocrystalline semiconductors, as collections of quantum dots (QD or Q-dot) attached to a solid surface, resemble in many ways semiconductor colloids dispersed in a liquid or solid phase and can be considered as a subsection of the latter category. The first 3D quantum size effect, on small Agl and CdS colloids, was observed and correctly explained, back in 1967 [109]. However, systematic studies in this field only began in the 1980s. [Pg.182]

The linear velocity of the liquid developing under the effect of this force is zero directly at the solid surface, and increases to some maximum value v at the distance X = 8o from the surface. Solution regions farther out lack the excess charges that could come under the effect of the external electric field hence, there is no further increase in liquid velocity (Fig. 31.4). When the layer (Sg) is much thinner than the capillary radius, 5g r, the assumption can be made that the bulk of the solution moves with a uniform velocity v. [Pg.601]


See other pages where Field solid surfaces is mentioned: [Pg.257]    [Pg.398]    [Pg.484]    [Pg.637]    [Pg.920]    [Pg.1787]    [Pg.2925]    [Pg.80]    [Pg.177]    [Pg.1590]    [Pg.85]    [Pg.6]    [Pg.832]    [Pg.534]    [Pg.245]    [Pg.389]    [Pg.947]    [Pg.311]    [Pg.179]    [Pg.433]    [Pg.176]    [Pg.102]    [Pg.68]    [Pg.290]    [Pg.625]    [Pg.6]    [Pg.140]    [Pg.209]    [Pg.239]    [Pg.91]    [Pg.285]    [Pg.325]    [Pg.5]    [Pg.9]   
See also in sourсe #XX -- [ Pg.1024 ]




SEARCH



Field surface

© 2024 chempedia.info