Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferrite hardening

The enhanced strength and corrosion properties of duplex stainless steels depend on maintaining equal amounts of the austenite and ferrite phases. The welding thermal cycle can dismpt this balance therefore, proper weld-parameter and filler metal selection is essential. Precipitation-hardened stainless steels derive their additional strength from alloy precipitates in an austenitic or martensitic stainless steel matrix. To obtain weld properties neat those of the base metal, these steels are heat treated after welding. [Pg.347]

Precipitation Hardening. With the exception of ferritic steels, which can be hardened either by the martensitic transformation or by eutectoid decomposition, most heat-treatable alloys are of the precipitation-hardening type. During heat treatment of these alloys, a controlled dispersion of submicroscopic particles is formed in the microstmeture. The final properties depend on the manner in which particles are dispersed, and on particle size and stabiUty. Because precipitation-hardening alloys can retain strength at temperatures above those at which martensitic steels become unstable, these alloys become an important, in fact pre-eminent, class of high temperature materials. [Pg.114]

When a steel is cooled sufficiendy rapidly from the austenite region to a low (eg, 25°C) temperature, the austenite decomposes into a nonequilihrium phase not shown on the phase diagram. This phase, called martensite, is body-centered tetragonal. It is the hardest form of steel, and its formation is critical in hardening. To form martensite, the austenite must be cooled sufficiently rapidly to prevent the austenite from first decomposing to the softer stmeture of a mixture of ferrite and carbide. Martensite begins to form upon reaching a temperature called the martensite start, Af, and is completed at a lower temperature, the martensite finish, Mj, These temperatures depend on the carbon and alloy content of the particular steel. [Pg.211]

Liquid Nitriding. As in gas nitriding, the process is carried out below the austenite region, and hardening is associated with the formation of hard nitrides in the ferrite. Liquid cyanide salts are used with others to provide the source of nitrogen. [Pg.217]

Ferritic Nitrocarburizing. This process is similar to carbonitriding, except that it is carried out in the temperature range of the stabiHty of ferrite and carbide (<723° C). Therefore hardening is not by martensite formation, but because of the formation of very hard carbonitrides. [Pg.217]

Austenitic Nitrocarburizing. This is similar to ferritic nitrocarburizing except that the temperature may extend into the austenite range. The case usually consists of hard carbonitride particles, and quenching to achieve hardening is not required. [Pg.217]

Ferritic Stainless Steels. These steels are iron—chromium alloys not hardenable by heat treatment. In alloys having 17% chromium or more, an insidious embrittlement occurs in extended service around 475°C. This can be mitigated to some degree but not eliminated. They commonly include Types 405, 409, 430, 430F, and 446 (see Table 4) newer grades are 434, 436, 439, and 442. [Pg.399]

Other reactions taking place throughout the hardening period are substitution and addition reactions (29). Ferrite and sulfoferrite analogues of calcium monosulfoaluminate and ettringite form soHd solutions in which iron oxide substitutes continuously for the alumina. Reactions with the calcium sihcate hydrate result in the formation of additional substituted C—S—H gel at the expense of the crystalline aluminate, sulfate, and ferrite hydrate phases. [Pg.288]

Martensitic Stainless Steels. The martensitic stainless steels have somewhat higher carbon contents than the ferritic grades for the equivalent chromium level and are therefore subject to the austenite—martensite transformation on heating and quenching. These steels can be hardened significantly. The higher carbon martensitic types, eg, 420 and 440, are typical cutiery compositions, whereas the lower carbon grades are used for special tools, dies, and machine parts and equipment subject to combined abrasion and mild corrosion. [Pg.127]

Austenitic steels have a number of advantages over their ferritic cousins. They are tougher and more ductile. They can be formed more easily by stretching or deep drawing. Because diffusion is slower in f.c.c. iron than in b.c.c. iron, they have better creep properties. And they are non-magnetic, which makes them ideal for instruments like electron microscopes and mass spectrometers. But one drawback is that austenitic steels work harden very rapidly, which makes them rather difficult to machine. [Pg.131]

The corrosive and mechanical effects of flow are observed in pipes, especially at bends and downstream of flow disturbances, tube and shell heat exchangers, valves and pumps. More corrosion and/or harder materials are used in such areas. Austenitic stainless steels work harden and hence are superior in flowing conditions to ferritic stainless steels of otherwise similar corrosion resistance. Hard... [Pg.900]

The material properties used in the simulations pertain to a new X70/X80 steel with an acicular ferrite microstructure and a uniaxial stress-strain curve described by er, =tr0(l + / )", where ep is the plastic strain, tr0 = 595 MPa is the yield stress, e0=ff0l E the yield strain, and n = 0.059 the work hardening coefficient. The Poisson s ratio is 0.3 and Young s modulus 201.88 OPa. The system s temperature is 0 = 300 K. We assume the hydrogen lattice diffusion coefficient at this temperature to be D = 1.271x10 m2/s. The partial molar volume of hydrogen in solid solution is... [Pg.190]

In the cement industry, the term hydration is used to describe a range of reactions between cement and water to produce a hardened product. A cement clinker particle is a multiphase solid having massive calcium silicate grains (50-100 pm) in a matrix of interstitial aluminate and ferrite. This is described as analogous to a distorted clay sequence, which traps regions of porosity-pore size distribution from nanometer to micrometer. [Pg.220]

F, Ferrite, C, Carbides, A, Austenite M, Martensite TS, as tempered IP, Intermetallic phases PH, Precipation hardened H T, Heat treated and tempered, H, Heat-treated. [Pg.181]

The precipitation-hardening stainless steels are proprietary grades hardened by both the martensitic transformation and precipitation hardening. These contain higher amounts of chromium (16-17% ) and nickel (4- 7%) than (he 12% chromium ferritic alloys. These steels are normally used at lower temperatures than the 12% chromium ferritic superalloys. [Pg.775]


See other pages where Ferrite hardening is mentioned: [Pg.347]    [Pg.119]    [Pg.392]    [Pg.211]    [Pg.214]    [Pg.217]    [Pg.217]    [Pg.396]    [Pg.282]    [Pg.121]    [Pg.126]    [Pg.128]    [Pg.138]    [Pg.350]    [Pg.530]    [Pg.530]    [Pg.530]    [Pg.537]    [Pg.546]    [Pg.1036]    [Pg.1196]    [Pg.1252]    [Pg.294]    [Pg.408]    [Pg.409]    [Pg.982]    [Pg.812]    [Pg.148]    [Pg.352]    [Pg.469]    [Pg.58]    [Pg.170]    [Pg.33]    [Pg.142]    [Pg.58]    [Pg.885]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Ferritic

Harden

Hardened

Hardener

Hardeners

Hardening

© 2024 chempedia.info