Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steel work hardening

Austenitic steels have a number of advantages over their ferritic cousins. They are tougher and more ductile. They can be formed more easily by stretching or deep drawing. Because diffusion is slower in f.c.c. iron than in b.c.c. iron, they have better creep properties. And they are non-magnetic, which makes them ideal for instruments like electron microscopes and mass spectrometers. But one drawback is that austenitic steels work harden very rapidly, which makes them rather difficult to machine. [Pg.131]

The corrosive and mechanical effects of flow are observed in pipes, especially at bends and downstream of flow disturbances, tube and shell heat exchangers, valves and pumps. More corrosion and/or harder materials are used in such areas. Austenitic stainless steels work harden and hence are superior in flowing conditions to ferritic stainless steels of otherwise similar corrosion resistance. Hard... [Pg.900]

The austenitic stainless steels work-harden very rapidly as shown in Figure 38.2 and therefore, cannot be cold-worked without intermediate heat treatments. The heat treatments should not induce, however, the formation of chromium carbide (CCr4) in the grain boundaries this may cause corrosion. For the same reason, the austenitic stainless steel implants are not usually welded. [Pg.669]

The Brinell test range is limited, by the capabUity of the hardened steel baU indenters used, to HBN 444. This range can be extended upward to HBN 500 by using special cold work-hardened steel baUs and to as high as HBN 627 by using special tungsten carbide bads. [Pg.464]

Little error is introduced using the idealized stress—strain diagram (Eig. 4a) to estimate the stresses and strains in partiady plastic cylinders since many steels used in the constmction of pressure vessels have a flat top to their stress—strain curve in the region where the plastic strain is relatively smad. However, this is not tme for large deformations, particularly if the material work hardens, when the pressure can usuady be increased above that corresponding to the codapse pressure before the cylinder bursts. [Pg.79]

When austenitic stainless-steel tubes are used for corrosion resistance, a close fit between the tube and the tube hole is recommended in order to minimize work hardening and the resulting loss of corrosion resistance. [Pg.1074]

Austenitic stainless steels are the most corrosion-resistant of the three groups. These steels contain 16 to 26 percent chromium and 6 to 22 percent nickel. Carbon is kept low (0.08 percent maximum) to minimize carbide precipitation. These alloys can be work-hardened, but heat treatment will not cause hardening. Tensile strength in the annealed condition is about 585 MPa (85,000 Ibf/in"), but workhardening can increase this to 2,000 MPa (300,000 Ibf/in"). Austenitic stainless steels are tough and ducdile. [Pg.2448]

Strong materials either have a high intrinsic strength, /, (like diamond), or they rely on the superposition of. solid solution strengthening obstacles fo and work-hardening f i, (like high-tensile steels). But before we can use this information, one problem... [Pg.107]

Finally, mild steel can sometimes show an instability like that of polythene. If the steel is annealed, the stress/strain curve looks like that in Fig. 11.10. A stable neck, called a Luders Band, forms and propagates (as it did in polythene) without causing fracture because the strong work-hardening of the later part of the stress/strain curve prevents this. Luders Bands are a problem when sheet steel is pressed because they give lower precision and disfigure the pressing. [Pg.118]

Samples cut from a length of work-hardened mild steel bar were annealed for various times at three different temperatures. The samples were then cooled to room temperature and tested for hardness. The results are given below. [Pg.66]

Materials with hard oxides, including stainless steels and aluminum and titanium alloys, are particularly susceptible to this form of attack. In steel, it is also known as false Brinelling because of the high surface hardness that can be created in work-hardening grades. [Pg.896]

All the stainless steels can be machined in the softened states, but they may present some problems unless the correct techniques are adopted. This is especially so with the austenitic grades where the extreme ductility minimises chip breaking and the work hardening may cause difficulties unless modest cuts are made. The free-cutting grades (those with high sulphur contents or selenium additions) are much easier to machine, but it must be remembered that they have somewhat reduced corrosion resistance, ductility and weldability compared to their normal counterparts. Detailed machining instructions are readily available from steel suppliers. [Pg.531]

Niobium is always found in nature associated with tantalum and it closely resembles tantalum in its chemical and mechanical properties. It is a soft ductile metal which, like tantalum, work hardens more slowly than most metals. It will in fact absorb over 90% cold work before annealing becomes necessary, and it is easily formed at room temperature. In addition, welds of high quality can be produced in the metal. In appearance the metal is somewhat similar to stainless steel it has a density slightly higher than stainless steel and a thermal conductivity similar to 1% carbon steel. [Pg.852]

The material properties used in the simulations pertain to a new X70/X80 steel with an acicular ferrite microstructure and a uniaxial stress-strain curve described by er, =tr0(l + / )", where ep is the plastic strain, tr0 = 595 MPa is the yield stress, e0=ff0l E the yield strain, and n = 0.059 the work hardening coefficient. The Poisson s ratio is 0.3 and Young s modulus 201.88 OPa. The system s temperature is 0 = 300 K. We assume the hydrogen lattice diffusion coefficient at this temperature to be D = 1.271x10 m2/s. The partial molar volume of hydrogen in solid solution is... [Pg.190]


See other pages where Steel work hardening is mentioned: [Pg.79]    [Pg.396]    [Pg.486]    [Pg.1830]    [Pg.2448]    [Pg.121]    [Pg.244]    [Pg.350]    [Pg.45]    [Pg.528]    [Pg.530]    [Pg.564]    [Pg.1240]    [Pg.1252]    [Pg.1322]    [Pg.1331]    [Pg.31]    [Pg.393]    [Pg.58]    [Pg.604]    [Pg.792]    [Pg.885]    [Pg.243]    [Pg.115]    [Pg.83]    [Pg.1589]    [Pg.2203]    [Pg.120]    [Pg.396]    [Pg.308]    [Pg.19]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Harden

Hardened

Hardener

Hardeners

Hardening

Steel hardenability

Steel hardened

Steel, hardening

Working steels

© 2024 chempedia.info