Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferric carbonate

The ions of ferric carbonate are brought together in the solution, but this salt evidently cannot exist. Its hydrolysis products, ferric hydroxide and carbonic acid (C02), are obtained. The behavior of the red precipitate when treated with HC1 shows that it is ferric hydroxide and not ferric carbonate. [Pg.346]

Properties Reddish-brown powder containing ferric carbonate with ferric hydroxide Fe(OH)3 and ferrous hydroxide Fe(OH)2in varying quantities not a true oxide. Soluble in acids insoluble in water and alcohol. [Pg.701]

P Keto esters (t.g., ethyl ocetoacetate) are soluble in solutions of caustic alkalis but not in sodium carbonate solution. They give colours with freshly prepared ferric chloride solution a little alcohol should be added to bring the ester into solution. Sodium ethoxide solution reacts to yield sodio compounds, which usually crystallise out in the cold. Phenylhydrazine yields pyrazolones. They are hydrolysed by boiling sulphuric acid to the Corresponding ketones, which can be identified as usual (Section 111,74). [Pg.392]

Bromine in carbon tetrachloride and bromine water, (c) Ferric chloride solution. [Pg.1080]

Alkali metal haHdes can be volatile at incineration temperatures. Rapid quenching of volatile salts results in the formation of a submicrometer aerosol which must be removed or else exhaust stack opacity is likely to exceed allowed limits. Sulfates have low volatiHty and should end up in the ash. Alkaline earths also form basic oxides. Calcium is the most common and sulfates are formed ahead of haHdes. Calcium carbonate is not stable at incineration temperatures (see Calcium compounds). Transition metals are more likely to form an oxide ash. Iron (qv), for example, forms ferric oxide in preference to haHdes, sulfates, or carbonates. SiHca and alumina form complexes with the basic oxides, eg, alkaH metals, alkaline earths, and some transition-metal oxidation states, in the ash. [Pg.58]

Acidic Properties. As a typical acid, it reacts readily with alkaUes, basic oxides, and carbonates to form salts. The largest iadustrial appHcation of nitric acid is the reaction with ammonia to produce ammonium nitrate. However, because of its oxidising nature, nitric acid does not always behave as a typical acid. Bases having metallic radicals ia a reduced state (eg, ferrous and staimous hydroxide becoming ferric and stannic salts) are oxidized by nitric acid. Except for magnesium and manganese ia very dilute acid, nitric acid does not Hberate hydrogen upon reaction with metals. [Pg.39]

Analysis. Dilute aqueous solutions of hydroxyhydroquiaone turn blue-green temporarily when mixed with ferric chloride. The solutions darken upon addition of small amounts, and turn red with additions of larger amounts of sodium carbonate. Derivatives used for identification are the picrate, which forms orange-red needles (mp of 96°C), and the triacetate (mp 96—97°C). Thin-layer chromatography and Hquid chromatography are well suited for the quahtative and quantitative estimation of hydroxyhydroquiaone (93,94). [Pg.380]

Strontium Hexaferrite. Strontium hexaferrite [12023-91 -5] SrO-6 Fe2 03, is made by combining powdered ferric oxide, Fe203, and strontium carbonate, SrCO, and calcining the mixture at ca 1000°C in a rotary kiln (9). The material is cmshed, mixed with a binder, and pressed or extmded into... [Pg.474]

Shipment and Storage. Sulfur dichloride, if kept dry, is noncorrosive at ambient temperatures, thus carbon steel and Hon can be used Hi the constmction of tanks, piping, and dmms. However, when water or humidity is present, materials resistant to hydrochloric acid must be used, eg, glass-lined pipe. Teflon, titanium, HasteUoy C, or possibly a chemically resistant, glass-reiaforced polyester. Threaded pipe joHits should be assembled with Teflon tape. Hoses should be constmcted with a Teflon inner lining with the outer tube constmcted of Neoprene or braided 316 stainless steel protected by an adequate thickness of Teflon. Sulfur dichloride should be stored away from heat and away from dHect rays of the sum. Toluene and sulfur dichloride react exothermically when catalyzed by Hon or ferric chloride. Safety precautions should be foUowed when such a mixture is present (165). [Pg.139]

Ferrous orthotitanate [12160-20-2] Fe2Ti04, is orthorhombic and opaque. It has been prepared by heating a mixture of ferrous oxide and titanium dioxide. Ferrous dititanate [12160-10-0] FeTi20, is orthorhombic and has been prepared by reducing ilmenite with carbon at 1000°C. The metallic ion formed in the reaction is removed, leaving a composition that is essentially the dititanate. Ferric titanate [1310-39-0] (pseudobrookite), Fe2TiO, is orthorhombic and occurs to a limited state in nature. It has been prepared by heating a mixture of ferric oxide and titanium dioxide in a sealed quartz tube at 1000°C. [Pg.128]

Cadmium Hydroxide. Cd(OH)2 [21041-95-2] is best prepared by addition of cadmium nitrate solution to a boiling solution of sodium or potassium hydroxide. The crystals adopt the layered stmcture of Cdl2 there is contact between hydroxide ions of adjacent layers. Cd(OH)2 can be dehydrated to the oxide by gende heating to 200°C it absorbs CO2 from the air forming the basic carbonate. It is soluble ia dilute acids and solutions of ammonium ions, ferric chloride, alkah haUdes, cyanides, and thiocyanates forming complex ions. [Pg.395]

Carbon tetrachloride readily dissolves stannic chloride, SnCl, but not ferric chloride, FeCl. Carbon tetrachloride forms a large number of binary and several ternary azeotropic mixtures a partial Hst of the former is shown in Table 3. [Pg.530]

Carbon Disulfide Chlorination. The chlorination of carbon disulfide [75-15-0] is a very old method of producing carbon tetrachloride that is still practiced commercially in the United States. In this process CS2 reacts continuously with chlorine in an annular reactor at 105—130°C. Product CCl is separated by distillation to a CS2 content of 0—5 ppm. By-product S2CI2 is reduced in a reactor at 450°C with hydrogen without a catalyst to give sulfur of 99.985% purity (32). Other processes use ferric chloride as a catalyst (33,34). [Pg.531]

Hexachloroethane is formed in minor amounts in many industrial chlorination processes designed to produce lower chlorinated hydrocarbons, usually via a sequential chlorination step. Chlorination of tetrachloroethylene, in the presence of ferric chloride, at 100—140°C is one convenient method of preparing hexachloroethane (142). Oxychlorination of tetrachloroethylene, using a copper chloride catalyst (143) has also been used. Photochemical chlorination of tetrachloroethylene under pressure and below 60°C has been studied (144) and patented as a method of producing hexachloroethane (145), as has recovery of hexachloroethane from a mixture of other perchlorinated hydrocarbon derivatives via crystalH2ation in carbon tetrachloride. Chlorination of hexachlorobutadiene has also been used to produce hexachloroethane (146). [Pg.15]

Outer crust. A friable outer crust forms atop the tubercle. The crust is composed of ferric hydroxide (hematite), carbonates, silicates, other precipitates, settled particulate, and detritus. Ferrous ion and ferrous hydroxide generated within the tubercle diffuse outward through fis-... [Pg.39]

Hence, copper heat exchanger tubes handling acetic acid can he more seriously corroded at low temperatures than at high temperatures. Sulfuric acid at room temperature is handled routinely in carbon steel drums and tanks when water concentration is low, but it becomes extremely corrosive as water concentration increases. As ferric-ion concentration increases during acid cleaning of industrial systems, the corrosion rate of steel increases rapidly. [Pg.164]

Industrially, chlorine is obtained as a by-product in the electrolytic conversion of salt to sodium hydroxide. Hazardous reactions have occuned between chlorine and a variety of chemicals including acetylene, alcohols, aluminium, ammonia, benzene, carbon disulphide, diethyl ether, diethyl zinc, fluorine, hydrocarbons, hydrogen, ferric chloride, metal hydrides, non-metals such as boron and phosphorus, rubber, and steel. [Pg.280]


See other pages where Ferric carbonate is mentioned: [Pg.213]    [Pg.290]    [Pg.310]    [Pg.315]    [Pg.513]    [Pg.299]    [Pg.46]    [Pg.55]    [Pg.201]    [Pg.213]    [Pg.290]    [Pg.310]    [Pg.315]    [Pg.513]    [Pg.299]    [Pg.46]    [Pg.55]    [Pg.201]    [Pg.747]    [Pg.1094]    [Pg.1094]    [Pg.293]    [Pg.28]    [Pg.284]    [Pg.150]    [Pg.380]    [Pg.444]    [Pg.413]    [Pg.433]    [Pg.342]    [Pg.49]    [Pg.53]    [Pg.417]    [Pg.531]    [Pg.282]    [Pg.23]    [Pg.55]    [Pg.195]    [Pg.209]    [Pg.2229]    [Pg.55]    [Pg.131]    [Pg.375]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



25. colloidal ferric carbonate

Ferric oxide solubility sodium carbonate solution

Reaction of lithium carbonate with ferric oxide

© 2024 chempedia.info