Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fermentation cellulose hydrolysis

Since protein adsorption to an anion exchange resin is reversible and does not constitute a classical immobilization, the ability of the resins to retain activity under various conditions must be determined. Macrosorb KAX DEAE bound -D-glucosidase was tested with solutions of primary interest for their final application. Several batch washes of a 1% w/v slurry were required to ensure complete equilibrium elution for a given concentration, as determined from the absence of pNPG units in subsequent washes. Several salt solutions of typical fermentation media components were tested. These included 3 mM to 50 mM solutions of MgSO, KHgPO, NaQ, and sodium acetate. Also, incubations with cellulase solutions were tested to determine if the proteins present in a cellulose hydrolysis would displace the -D-glucosidase. Both of these displacement studies were carried out at 22°C and 40 C. [Pg.142]

Two broad areas of application for xylanolytic enzymes have been identified (1). The first involves the use of xylanases with other hydrolytic enzymes in the bioconversion of wastes such as those from the forest and agricultural industries, and in the clarification and liquification of juices, vegetables and fruits. For these purposes, the enzyme preparations need only to be filtered and concentrated as essentially no further purification is required. Several specific examples of applications involving crude xylanase preparations include bioconversion of cellulosic materials for subsequent fermentation (2) hydrolysis of pulp waste liquors and wood extractives to monomeric sugars for subsequent production of single cell protein (3-5). Xylose produced by the action of xylanases can be used for subsequent production of higher value compounds such as ethanol (6), xylulose (7) and xyIonic acid (8-9). [Pg.642]

As mentioned in the biological—biochemical section, another approach to improve alcoholic fermentation combines saccharification and fermentation, ie, simultaneous saccharification and fermentation (SSF). Enzyme-catalyzed cellulose hydrolysis and fermentation to alcohol takes place in the same vessel in the presence of enzyme and yeast (50). Reduced fermenter pressures and enzyme and yeast recycling result in 70 to 80% ethanol yields. These process modifications, coupled with more energy-efficient distillation and heat exchanger improvements, are projected to make fermentation ethanol from low value biomass competitive with industrial ethanol (51). [Pg.27]

This monograph is focused primarily on hydrolysis of cellulose. However, the choice of technology for cellulose hydrolysis depends both on the state of the cellulose when it reaches the hydrolysis process and on the fermentation (or other) technology to be applied to the output of the cellulose hydrolysis process. Dr. Humphrey s chapter treats the downstream fermentation technology this chapter is concerned primarily with preparation of cellulose for hydrolysis. [Pg.10]

Index Entries Trichoderma reesei fermentation cellulase growth characterization cellulose hydrolysis. [Pg.115]

When cellulose is used as a raw material, the activity of cellulase (the enzyme catalyzing cellulose hydrolysis) is inhibited by glucose and short cellulose chains. One way to overcome this inhibition is to combine enzymatic hydrolysis with glucose fermentation to ethanol, as the accumulation of ethanol in fermenter does not inhibit cellulase. [Pg.450]

An approach to the production of ethylene from biomass that does not involve pyrolysis is ethanol dehydration. The catalytic conversion of syngas to ethanol from low-grade biomass (or fossil) feedstocks, and fermentation ethanol via advanced cellulose hydrolysis and fermentation methods, which make it possible to obtain high yields of ethanol from low-grade biomass feedstocks as well, are both expected to be commercialized in the United States (Chapter 11). Which technology becomes dominant in the market place has... [Pg.516]

Enzyme activity loss because of non-productive adsorption on lignin surface was identified as one of the important factors to decrease enzyme effectiveness, and the effect of surfactants and non-catalytic protein on the enzymatic hydrolysis has been extensively studied to increase the enzymatic hydrolysis of cellulose into fermentable sugars [7, 9 19]. The reported study showed that the non-ionic surfactant poly(oxyethylene)2o-sorbitan-monooleate (Tween 80) enhanced the enzymatic hydrolysis rate and extent of newspaper cellulose by 33 and 14%, respectively [20]. It was also found that 30% more FPU cellulase activity remained in solution, and about three times more recoverable FPU activity could be recycled with the presence of Tween 80. Tween 80 enhanced enzymatic hydrolysis yields for steam-exploded poplar wood by 20% in the simultaneous saccharification and fermentation (SSF) process [21]. Helle et al. [22] reported that hydrolysis yield increased by as much as a factor of 7, whereas enzyme adsorption on cellulose decreased because of the addition of Tween 80. With the presence of poly(oxyethylene)2o-sorbitan-monolaurate (Tween 20) and Tween 80, the conversions of cellulose and xylan in lime-pretreated com stover were increased by 42 and 40%, respectively [23]. Wu and Ju [24] showed that the addition of Tween 20 or Tween 80 to waste newsprint could increase cellulose conversion by about 50% with the saving of cellulase loading of 80%. With the addition of non-ionic, anionic, and cationic surfactants to the hydrolysis of cellulose (Avicel, tissue paper, and reclaimed paper), Ooshima et al. [25] subsequently found that Tween 20 was the most effective for the enhancement of cellulose conversion, and anionic surfactants did not have any effect on cellulose hydrolysis. With the addition of Tween 20 in the SSF process for... [Pg.354]

In direct microbial conversion of lignocellulosic biomass into ethanol that could simplify the ethanol production process from these materials and reduce ethanol production costs, Clostridium thermocellum, a thermoanaerobe was used for enzyme production, hydrolysis and glucose fermentation (755). Cofermentation with C thermosaccharolyticum simultaneously converted the hemicellulosic sugars to ethanol. However, the formations of by-products such as acetic acid and low ethanol tolerance are some drawbacks of the process. Neurospora crassa produces extracellular cellulase and xylanase and has the ability to ferment cellulose to ethanol 139). [Pg.13]

Cellulose hydrolysis and fermentation of sugar solution carried out in the same tank is referred to as SSF. Simultaneous saccharification of both cellulose (to glucose) and hemicellulose (to xylose and arabinose) and cofermentation of both glucose and xylose carried out by genetically engineered microbes that ferment xylose and glucose in the same broth is referred to as SSCF. [Pg.397]

Since cellulose hydrolysis and fermentation of the sugar solution are carried out continuously in the same tank and glucose is continuously fermented, the feedback inhibition to cellulose due to the increase of glucose concentration is avoided. From a technological aspect, this method simplifies the equipment needed, saves production time, and improves the production efficiency. But there are some inhibitory factors, such as the inhibition of xylose and incoordination of the saccharification and fermentation times (Oscar and Carlos 2007). [Pg.397]


See other pages where Fermentation cellulose hydrolysis is mentioned: [Pg.27]    [Pg.181]    [Pg.43]    [Pg.333]    [Pg.337]    [Pg.161]    [Pg.280]    [Pg.9]    [Pg.34]    [Pg.44]    [Pg.58]    [Pg.1014]    [Pg.1116]    [Pg.1121]    [Pg.1123]    [Pg.441]    [Pg.447]    [Pg.1462]    [Pg.419]    [Pg.459]    [Pg.476]    [Pg.23]    [Pg.552]    [Pg.69]    [Pg.43]    [Pg.286]    [Pg.354]    [Pg.9]    [Pg.86]    [Pg.372]    [Pg.109]    [Pg.117]    [Pg.193]    [Pg.209]    [Pg.211]    [Pg.333]    [Pg.334]    [Pg.912]    [Pg.13]   


SEARCH



Cellulose fermentation

© 2024 chempedia.info