Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Positive feedback loop

Figure Bl.19.39. Schematic of the themiocoiiple probe in a scaiming themial profiler. The probe is supported on a piezoelectric element for modulation of tip-sample distance at frequency oi and to provide positioning. The AC thennal signal at oi is detected, rectified, and sent to the feedback loop, which supplies a voltage to the piezostack to maintain the average tip-sample spacing constant. (Taken from [209], figure 1.)... Figure Bl.19.39. Schematic of the themiocoiiple probe in a scaiming themial profiler. The probe is supported on a piezoelectric element for modulation of tip-sample distance at frequency oi and to provide positioning. The AC thennal signal at oi is detected, rectified, and sent to the feedback loop, which supplies a voltage to the piezostack to maintain the average tip-sample spacing constant. (Taken from [209], figure 1.)...
In its most common mode of operation, STM employs a piezoelectric transducer to scan the tip across the sample (Figure 2a). A feedback loop operates on the scanner to maintain a constant separation between the tip and the sample. Monitoring the position of the scanner provides a precise measurement of the tip s position in three dimensions. The precision of the piezoelectric scanning elements, together with the exponential dependence of A upon c/means that STM is able to provide images of individual atoms. [Pg.88]

Note that in Figure 4.12 there is a positive feedback loop. Flence the closed-loop transfer function relating and C (.v) is... [Pg.70]

The angular positional control system shown by the block diagram in Figure 10.36 is to have the velocity feedback loop removed and controller K replaced by a fuzzy logic controller (FLC) as demonstrated by Barrett (1992). The inputs to the FLC... [Pg.373]

A mechanical system, typified by a pendulum, can oscillate around a position of final equilibrium. Chemical systems cannot do so, because of the fundamental law of thermodynamics that at all times AG > 0 when the system is not at equilibrium. There is nonetheless the occasional chemical system in which intermediates oscillate in concentration during the course of the reaction. Products, too, are formed at oscillating rates. This striking phenomenon of oscillatory behavior can be shown to occur when there are dual sets of solutions to the steady-state equations. The full mathematical treatment of this phenomenon and of instability will not be given, but a simplified version will be presented. With two sets of steady-state concentrations for the intermediates, no sooner is one set established than the consequent other changes cause the system to pass quickly to the other set, and vice versa. In effect, this establishes a chemical feedback loop. [Pg.190]

There is nothing in Equations 1-8 which is an all-or-none situation. There are no positive feedback loops which might cause some kind of flip-flop of states of operation of the system. There are some possibilities for saturation phenomena but all relationships are graded. Overall, transient or steady-state, the changes of concentration of P-myosin are continuous, monotonic functions of the intracellular Ca ion concentration. On this basis it is more appropriate to say that smooth muscle contraction is modulated rather than triggered by Ca ion. [Pg.179]

Two working modes are used for the STM first, the constant height-mode, in which the recorded signal is the tunneling current versus the position of the tip over the sample, and the initial height of the STM tip with respect to the sample surface is kept constant (Fig. 22(a)). In the constant currentmode, a controller keeps the measured tunneling current constant. In order to do that, the distance between tip and sample must be adjusted to the surface structure and to the local electron density of the probed sample via a feedback loop (Fig. 22(b)). [Pg.19]

The deuterium line of the deuterated solvent is used for this purpose, and, as stated earlier, the intensity of this lock signal is also employed to monitor the shimming process. The deuterium lock prevents any change in the static field or radiofrequency by maintaining a constant ratio between the two. This is achieved via a lock feedback loop (Fig. 1.10), which keeps a constant frequency of the deuterium signal. The deuterium line has a dispersion-mode shape i.e., its amplitude is zero at resonance (at its center), but it is positive and negative on either side (Fig. 1.11). If the receiver reference phase is adjusted correcdy, then the signal will be exactly on resonance. If, however, the field drifts in either direction, the detector will... [Pg.18]

As pointed out above, an STM tip can be used to nucleate and grow single clusters. In this type of experiment, cluster deposition on a STM tip is achieved when it is retracted about 10 to 20 run from the substrate surface. Under these conditions, where the feedback loop is disabled, absence of mechanical contact between the tip and the substrate in ensured. Then a positive potential pulse is applied to the tip, the metal deposited on it is dissolved, and it diffuses toward the substrate surface, where a nucleus develops and grows to yield a cluster, typically 20 nm wide. [Pg.686]

TRPVl also plays a central role in intercellular pro-inflammatory feedback loops. An important example is mast cells and sensory nerves. Mast cells release tryptase that, in turn, activates the protease-activated receptor PAR-2 activation of PAR-2 then opens TRPVl via PKC [50]. In keeping with this, PAR-2 agonists reduce the heat activation threshold of TRPVl from 42 °C to below body temperature [51]. Excited nerve endings release SP that, as a positive feedback, binds to neurokinin NKl receptors on mast cells. Mast cells also express TRPVl [52]. Consequently, endovanilloids can act in concert to stimulate mast cells and activate capsaicin-sensitive nerve endings. Of relevance is the finding that PAR-2 is up-regulated in the bladder during experimental cystitis [53]. [Pg.150]

Clotting cascade A series of enzymatic reactions by clotting factors leading to the formation of a blood clot. The clotting cascade is initiated by several thrombogenic substances. Each reaction in the cascade is triggered by the preceding one, and the effect is amplified by positive feedback loops. [Pg.1562]

Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000 406 309-314. [Pg.114]

The experimental set-up usually utilizes a piezoelectric tripod as a support of the tip (Fig. 5.36). This is movable vertically and laterally over the examined surface the vertical distance is fixed by a feedback loop to a constant tunnelling current at each point of the scan. The contours of the surface are thus visualized by voltage changes needed to move the piezoelectric tripod to a desired position. [Pg.351]

The important observation is that when we "close" a negative feedback loop, the numerator is consisted of the product of all the transfer functions along the forward path. The denominator is 1 plus the product of all the transfer functions in the entire feedback loop ( .e., both forward and feedback paths). The denominator is also the characteristic polynomial of the closed-loop system. If we have positive feedback, the sign in the denominator is minus. [Pg.39]

For example, as the control signal increases, a valve inside the positioner admits more supply air to the actuator. As a result, the control valve moves downward. The linkage transmits the valve position information back to the positioner. This forms a small internal feedback loop for the actuator. When the valve reaches the position that correlates to the control signal, the linkage stops supply air flow to the actuator. This causes the actuator to stop. On the other hand, if the control signal decreases, another valve inside the positioner opens and allows the supply air pressure to decrease by venting the supply air. This causes the valve to move upward and open. When the valve has opened to the proper position, the positioner stops venting air from the actuator and stops movement of the control valve. [Pg.164]


See other pages where Positive feedback loop is mentioned: [Pg.396]    [Pg.396]    [Pg.1677]    [Pg.533]    [Pg.751]    [Pg.310]    [Pg.108]    [Pg.108]    [Pg.158]    [Pg.368]    [Pg.368]    [Pg.368]    [Pg.369]    [Pg.1105]    [Pg.105]    [Pg.454]    [Pg.455]    [Pg.19]    [Pg.20]    [Pg.532]    [Pg.136]    [Pg.57]    [Pg.104]    [Pg.83]    [Pg.47]    [Pg.60]    [Pg.62]    [Pg.62]    [Pg.242]    [Pg.74]    [Pg.444]    [Pg.91]    [Pg.198]    [Pg.393]    [Pg.394]   
See also in sourсe #XX -- [ Pg.9 , Pg.256 , Pg.281 ]




SEARCH



Feedback loops

Feedback, positive

Position feedback

Positional feedback

© 2024 chempedia.info