Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acid synthase, enzyme complex

Pantothenic acid (8.48), a hydroxyamide, occurs mainly in liver, yeast, vegetables, and milk, but also in just about every other food source, as its name implies [pantos (Greek) = everywhere]. It is part of coenzyme A, the acyl-transporting enzyme of the Krebs cycle and lipid syntheses, as well as a constituent of the acyl carrier protein in the fatty-acid synthase enzyme complex. [Pg.506]

Figure 21-2. Fatty acid synthase multienzyme complex. The complex is a dimer of two identical polypeptide monomers, 1 and 2, each consisting of seven enzyme activities and the acyl carrier protein (ACP). (Cys— SH, cysteine thiol.) The— SH of the 4 -phosphopantetheine of one monomer is in close proximity to the— SH of the cysteine residue of the ketoacyl synthase of the other monomer, suggesting a "head-to-tail" arrangement of the two monomers. Though each monomer contains all the partial activities of the reaction sequence, the actual functional unit consists of one-half of one monomer interacting with the complementary half of the other. Thus, two acyl chains are produced simultaneously. The sequence of the enzymes in each monomer is based on Wakil. Figure 21-2. Fatty acid synthase multienzyme complex. The complex is a dimer of two identical polypeptide monomers, 1 and 2, each consisting of seven enzyme activities and the acyl carrier protein (ACP). (Cys— SH, cysteine thiol.) The— SH of the 4 -phosphopantetheine of one monomer is in close proximity to the— SH of the cysteine residue of the ketoacyl synthase of the other monomer, suggesting a "head-to-tail" arrangement of the two monomers. Though each monomer contains all the partial activities of the reaction sequence, the actual functional unit consists of one-half of one monomer interacting with the complementary half of the other. Thus, two acyl chains are produced simultaneously. The sequence of the enzymes in each monomer is based on Wakil.
Figure 8-2. Pathway for synthesis of palmitate by the fatty acid synthase (FAS) complex. Schematic representation of a single cycle adding two carbons to the growing acyl chain. Formation of the initial acetyl thioester with a cysteine residue of the enzyme preceded the first step shown. Acyl carrier protein (ACP) is a component of the FAS complex that carries the malonate covalently attached to a sulfhydryl group on its phosphopantatheine coenzyme (-SH in the scheme). Figure 8-2. Pathway for synthesis of palmitate by the fatty acid synthase (FAS) complex. Schematic representation of a single cycle adding two carbons to the growing acyl chain. Formation of the initial acetyl thioester with a cysteine residue of the enzyme preceded the first step shown. Acyl carrier protein (ACP) is a component of the FAS complex that carries the malonate covalently attached to a sulfhydryl group on its phosphopantatheine coenzyme (-SH in the scheme).
The remaining reactions in fatty acid synthesis take place on the fatty acid synthase multienzyme complex. This complex, the site of seven enzyme activities and ACP, is a 500-kD dimer. Because the enormous polypeptides in the dimer are arranged in a head-to-tail configuration, two fatty acids can be constructed simultaneously. A proposed mechanism for palmitate synthesis is shown in Figure 12.13. [Pg.395]

There is evidence that in eucaryotic organisms other than plants the fatty acid synthase enzymes are associated in a complex in which several functions exist in a single protein. The synthase in animal liver has been shown to be a complex of two identical... [Pg.45]

Figure 6 Fatty-acid biosynthesis. Cytoplasmic acetyl-CoA (AcCoA) is the primary substrate for de novo fatty-acid synthesis. This two-carbon compound most commonly derives from the glycolytic degradation of glucose, and its formation is dependent upon several reactions in the mitochondria. The mitochondrial enzyme pyruvate carboxylase is found primarily in tissues that can synthesize fatty acids. AcCoA is converted to maionyl-CoA (MalCoA) by acetyl-CoA carboxylase. Using AcCoA as a primer, the fatty-acid synthase multienzyme complex carries out a series of reactions that elongate the growing fatty acid by two carbon atoms. In this process MalCoA condenses with AcCoA, yielding an enzyme-bound four-carbon /3-ketoacid that is reduced, dehydrated, and reduced again. The product is enzyme-bound 4 0. This process is repeated six more times, after which 16 0 is released from the complex. The reductive steps require NADPH, which is derived from enzyme reactions and pathways shown in grey. Enz refers to the fatty acid synthase multienzyme complex. Figure 6 Fatty-acid biosynthesis. Cytoplasmic acetyl-CoA (AcCoA) is the primary substrate for de novo fatty-acid synthesis. This two-carbon compound most commonly derives from the glycolytic degradation of glucose, and its formation is dependent upon several reactions in the mitochondria. The mitochondrial enzyme pyruvate carboxylase is found primarily in tissues that can synthesize fatty acids. AcCoA is converted to maionyl-CoA (MalCoA) by acetyl-CoA carboxylase. Using AcCoA as a primer, the fatty-acid synthase multienzyme complex carries out a series of reactions that elongate the growing fatty acid by two carbon atoms. In this process MalCoA condenses with AcCoA, yielding an enzyme-bound four-carbon /3-ketoacid that is reduced, dehydrated, and reduced again. The product is enzyme-bound 4 0. This process is repeated six more times, after which 16 0 is released from the complex. The reductive steps require NADPH, which is derived from enzyme reactions and pathways shown in grey. Enz refers to the fatty acid synthase multienzyme complex.
Rittenberg and Bloch showed in the late 1940s that acetate units are the building blocks of fatty acids. Their work, together with the discovery by Salih Wakil that bicarbonate is required for fatty acid biosynthesis, eventually made clear that this pathway involves synthesis of malonyl-CoA. The carboxylation of acetyl-CoA to form malonyl-CoA is essentially irreversible and is the committed step in the synthesis of fatty acids (Figure 25.2). The reaction is catalyzed by acetyl-CoA carboxylase, which contains a biotin prosthetic group. This carboxylase is the only enzyme of fatty acid synthesis in animals that is not part of the multienzyme complex called fatty acid synthase. [Pg.805]

The enzymes that catalyze formation of acetyl-ACP and malonyl-ACP and the subsequent reactions of fatty acid synthesis are organized quite differently in different organisms. We first discuss fatty acid biosynthesis in bacteria and plants, where the various reactions are catalyzed by separate, independent proteins. Then we discuss the animal version of fatty acid biosynthesis, which involves a single multienzyme complex called fatty acid synthase. [Pg.808]

The Fatty Acid Synthase Complex Is a Polypeptide Containing Seven Enzyme Activities... [Pg.173]

In bacteria and plants, the individual enzymes of the fatty acid synthase system are separate, and the acyl radicals are found in combination with a protein called the acyl carrier protein (ACP). However, in yeast, mammals, and birds, the synthase system is a multienzyme polypeptide complex that incorporates ACP, which takes over the role of CoA. It contains the vitamin pantothenic acid in the form of 4 -phosphopan-tetheine (Figure 45-18). The use of one multienzyme functional unit has the advantages of achieving the effect of compartmentalization of the process within the cell without the erection of permeability barriers, and synthesis of all enzymes in the complex is coordinated since it is encoded by a single gene. [Pg.173]

The Fatty Acid Synthase Complex Acetyl-CoA Carboxylase Are Adaptive Enzymes... [Pg.179]

Fatty acid and triglyceride (triacylglycerol) synthesis acetyl-CoA carboxylase and fatty acid synthase multi-enzyme complex... [Pg.180]

Figure 11.5 Reactions of the fatty acid synthase complex. A single multi-subunit enzyme is responsible for the conversion of acetyl-CoA to palmitate. The subunits in the enzyme are (i) acetyltransferase, (ii) malonyltransferase, (iii) oxoacyl synthase, (iv) oxoacyl reductase, (v) hydroxyacyl dehydratase, (vi) enoyl reductase. Finally, a separate enzyme, thioester hydrolase, hydrolyses palmitoyl-CoA to produce palmitate (vii). Figure 11.5 Reactions of the fatty acid synthase complex. A single multi-subunit enzyme is responsible for the conversion of acetyl-CoA to palmitate. The subunits in the enzyme are (i) acetyltransferase, (ii) malonyltransferase, (iii) oxoacyl synthase, (iv) oxoacyl reductase, (v) hydroxyacyl dehydratase, (vi) enoyl reductase. Finally, a separate enzyme, thioester hydrolase, hydrolyses palmitoyl-CoA to produce palmitate (vii).
Fatty acid synthesis is catalysed in animals by the enzyme fatty acid synthase, which is a multifunctional protein containing all of the catalytic activities required. Bearing in mind the necessity to provide a specific binding site for the various substrates involved, and then the fairly complex sequence of reactions carried out, it raises the question of just how it is possible for this process to be achieved at the enzymic level. Nature has devised an elaborate but satisfyingly simple answer to this problem. [Pg.596]

C. Fatty acid synthase is a large multi-enzyme complex that catalyzes the addition of two-carbon units in a seven-step cycle (Figure 8-2). [Pg.106]

All the reactions in the synthetic process are catalyzed by a multienzyme complex, fatty acid synthase. Although the details of enzyme structure differ in prokaryotes such as Escherichia coli and in eukaryotes, the four-step process of fatty acid synthesis is the same in all organisms. We first describe the process as it occurs in A1, coli, then consider differences in enzyme structure in other organisms. [Pg.789]

FIGURE 21-5 Sequence of events during synthesis of a fatty acid. The fatty acid synthase complex is shown schematically. Each segment of the disk represents one of the six enzymatic activities of the complex. At the center is acyl carrier protein (ACP), with its phosphopantetheine arm ending in an —SH. The enzyme shown in blue is the one that will act in the next step. As in Figure 21-3, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as C02 is shaded green. Steps (T) to (7) are described in the text. [Pg.792]

The fatty acid synthases of yeast and of vertebrates are also multienzyme complexes, and their integration is even more complete than in E. coli and plants. In yeast, the seven distinct active sites reside in two large, multifunctional polypeptides, with three activities on the a subunit and four on the /3 subunit. In vertebrates, a single large polypeptide (Afr 240,000) contains all seven enzymatic activities as well as a hydrolytic activity that cleaves the finished fatty acid from the ACP-like part of the enzyme complex. The vertebrate enzyme functions as a dimer (Afr 480,000) in which the two identical subunits lie head-to-tail. The subunits appear to function independently. When all the active sites in one... [Pg.794]

FIGURE 21-7 Structure of fatty acid synthases. The fatty acid synthase of bacteria and plants is a complex of at least seven different polypeptides. In yeast, all seven activities reside in only two polypeptides the vertebrate enzyme is a single large polypeptide. [Pg.794]

The remaining series of reactions of fatty acid synthesis in eukary-l otes is catalyzed by the multifunctional, dimeric enzyme, fatty acid synthase. Each fatty acid synthase monomer is a multicatalytic polypeptide with seven different enzymic activities plus a domain that covalently binds a molecule of 4 -phosphopantetheine. [Note 4-Phosphopantetheine, a derivative of the vitamin pantothenic add (see p. 379), carries acetyl and acyl units on its terminal thiol (-SH)j group during fatty acid synthesis. It also is a component of 00-enzyme A.] In prokaryotes, fatty acid synthase is a multienzyme complex, and the 4 -phosphopantetheine domain is a separate protein, referred to as the acyl carrier protein (ACP). ACP is used below to refer to the phosphopantetheine-binding domain of the eukaryotic fatty acid synthase molecule. The reaction numbers in1 brackets below refer to Figure 16.9. [Note The enzyme activities listed are actually separate catalytic domains present in each mulf-1 catalytic fatty acid synthase monomer.]... [Pg.182]

The second type of arrangement observed for sequentially related enzymes is exemplified by the Escherichia coli fatty acid synthase (see chapter 18). This synthase is a complex of most of the enzymes involved in fatty acid synthesis. The intermediates in this case are bound to the enzyme complex until synthesis is complete. [Pg.230]

In contrast to the anaerobic pathway found in E. coli, the aerobic pathway in eukaryotic cells introduces double bonds after the saturated fatty acid has been synthesized. Stearoyl-CoA (18 0) is the major substrate for desaturation. Stearic acid is made by the fatty acid synthase as a minor product, the major product being palmitic acid, and is activated to its CoA derivative by acyl-CoA synthase. In eukaryotic cells an enzyme complex associated with the endoplasmic reticulum desaturates stearoyl-CoA to oleoyl-CoA (18 1A9). This remarkable reaction requires NADH and 02 and results in the formation of a double bond in the middle of an acyl chain with no activating groups nearby. The chemical mechanism for desaturation of long-chain acyl-CoAs remains unclear. [Pg.425]

A detailed study of amino acid sequences and mechanistic similarities in various polyketide synthase (PKS) enzymes has led to two main types being distinguished. Type I enzymes consist of one or more large multifunctional proteins that possess a distinct active site for every enzyme-catalysed step. On the other hand, Type II enzymes are multienzyme complexes that carry out a single set of repeating activities. Like fatty acid synthases, PKSs catalyse the condensation of coenzyme A esters of simple carboxylic acids. However, the variability at each step in... [Pg.114]


See other pages where Fatty acid synthase, enzyme complex is mentioned: [Pg.182]    [Pg.417]    [Pg.811]    [Pg.120]    [Pg.173]    [Pg.221]    [Pg.136]    [Pg.123]    [Pg.123]    [Pg.189]    [Pg.597]    [Pg.790]    [Pg.794]    [Pg.803]    [Pg.196]    [Pg.552]    [Pg.723]    [Pg.990]    [Pg.1185]    [Pg.1197]    [Pg.30]    [Pg.421]    [Pg.424]    [Pg.424]    [Pg.36]    [Pg.37]    [Pg.62]   
See also in sourсe #XX -- [ Pg.116 , Pg.376 , Pg.396 ]




SEARCH



Enzymes Fatty acid synthase

Fatty acid enzymes

Fatty acid synthase

Fatty acid synthase complex

Fatty acid synthases

© 2024 chempedia.info