Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

FAD reactions

Diels-Alder reaction, 493 El reaction, 391-392 ElcB reaction, 393 E2 reaction, 386 Edman degradation, 1032 electrophilic addition reaction, 147-148. 188-189 electrophilic aromatic substitution, 548-549 enamine formation, 713 enol formation, 843-844 ester hydrolysis, 809-811 ester reduction, 812 FAD reactions. 1134-1135 fat catabolism, 1133-1136 fat hydrolysis, 1130-1132 Fischer esterification reaction, 796 Friedel-Crafts acylation reaction, 557-558... [Pg.1305]

These enzymes are synthesized in the dehydrogenase form and exist mostly as such in the cell, but can be readily converted to the oxidase form by oxidation of sulfhydryl residues or by proteolysis. Xanthine dehydrogenase has a preference for NAD+ reduction at the FAD reaction site, whereas xanthine oxidase fails to react with NAD and exclusively uses dioxygen as the oxidant, leading to the formation of superoxide anion and hydrogen peroxide. ... [Pg.470]

The reasons for this lack of work are manifold The problem is quite complex and difficult to tackle. The information in reaction databases is inherently biased only known reactions, no reactions that failed, are stored. However, any learning also needs information on situations where a certain event will not happen or will fad. The quality of information stored in reaction databases often leaves something to be desired reaction equations are incomplete, certain detads on a reaction are often incomplete or missing, the coverage of the reaction space is not homogeneous, etc. Nevertheless, the challenge is there and the merits of success should be great ... [Pg.544]

Figure 11.39 summarizes the reactions taking place in this amperometric sensor. FAD is the oxidized form of flavin adenine nucleotide (the active site of the enzyme glucose oxidase), and FAD1T2 is the active site s reduced form. Note that O2 serves as a mediator, carrying electrons to the electrode. Other mediators, such as Fe(CN)6 , can be used in place of O2. [Pg.520]

The pilot plant must also be carehiUy designed so that its control and safety systems are "fad-safe" and any unexpected equipment or utdity fadure brings the unit into a safe and de-energized condition. Unexpected or rapid process changes, if they can herald or lead to dangerous conditions (eg, mnaway exothermic reaction), should be continuously monitored by appropriate instmmentation and suitable automatic action provided (1,55—67). [Pg.43]

The pyruvate dehydrogenase complex (PDC) is a noncovalent assembly of three different enzymes operating in concert to catalyze successive steps in the conversion of pyruvate to acetyl-CoA. The active sites of ail three enzymes are not far removed from one another, and the product of the first enzyme is passed directly to the second enzyme and so on, without diffusion of substrates and products through the solution. The overall reaction (see A Deeper Look Reaction Mechanism of the Pyruvate Dehydrogenase Complex ) involves a total of five coenzymes thiamine pyrophosphate, coenzyme A, lipoic acid, NAD+, and FAD. [Pg.644]

The mechanism of the pyruvate dehydrogenase reaction is a tour de force of mechanistic chemistry, involving as it does a total of three enzymes (a) and five different coenzymes—thiamine pyrophosphate, lipoic acid, coenzyme A, FAD, and NAD (b). [Pg.646]

The reaction of hydroxyethyl-TPP with the oxidized form of lipoic acid yields the energy-rich thiol ester of reduced lipoic acid and results in oxidation of the hydroxyl-carbon of the two-carbon substrate unit (c). This is followed by nucleophilic attack by coenzyme A on the carbonyl-carbon (a characteristic feature of CoA chemistry). The result is transfer of the acetyl group from lipoic acid to CoA. The subsequent oxidation of lipoic acid is catalyzed by the FAD-dependent dihydrolipoyl dehydrogenase and NAD is reduced. [Pg.647]

The TCA cycle can now be completed by converting succinate to oxaloacetate. This latter process represents a net oxidation. The TCA cycle breaks it down into (consecutively) an oxidation step, a hydration reaction, and a second oxidation step. The oxidation steps are accompanied by the reduction of an [FAD] and an NAD. The reduced coenzymes, [FADHg] and NADH, subsequently provide reducing power in the electron transport chain. (We see in Chapter 24 that virtually the same chemical strategy is used in /3-oxidation of fatty acids.)... [Pg.653]

FIGURE 20.14 The succinate dehydrogenase reaction. Oxidation of succinate occurs with reduction of [FAD]. Reoxidation of [FADH9] transfers electrons to coenzyme Q. [Pg.654]

Note that flavin coenzymes can carry out either one-electron or two-electron transfers. The succinate dehydrogenase reaction represents a net two-electron reduction of FAD. [Pg.654]

FIGURE 21.V The fatty acyl-CoA dehydrogenase reaction, emphasizing that the reaction involves reduction of enzyme-bonnd FAD (indicated by brackets). [Pg.684]

This impressive reaction is catalyzed by stearoyl-CoA desaturase, a 53-kD enzyme containing a nonheme iron center. NADH and oxygen (Og) are required, as are two other proteins cytochrome 65 reductase (a 43-kD flavo-protein) and cytochrome 65 (16.7 kD). All three proteins are associated with the endoplasmic reticulum membrane. Cytochrome reductase transfers a pair of electrons from NADH through FAD to cytochrome (Figure 25.14). Oxidation of reduced cytochrome be, is coupled to reduction of nonheme Fe to Fe in the desaturase. The Fe accepts a pair of electrons (one at a time in a cycle) from cytochrome b and creates a cis double bond at the 9,10-posi-tion of the stearoyl-CoA substrate. Og is the terminal electron acceptor in this fatty acyl desaturation cycle. Note that two water molecules are made, which means that four electrons are transferred overall. Two of these come through the reaction sequence from NADH, and two come from the fatty acyl substrate that is being dehydrogenated. [Pg.815]

Squalene monooxygenase, an enzyme bound to the endoplasmic reticulum, converts squalene to squalene-2,3-epoxide (Figure 25.35). This reaction employs FAD and NADPH as coenzymes and requires Og as well as a cytosolic protein called soluble protein activator. A second ER membrane enzyme, 2,3-oxidosqualene lanosterol cyclase, catalyzes the second reaction, which involves a succession of 1,2 shifts of hydride ions and methyl groups. [Pg.838]

The citric acid cycle, a nine-step process, also diverts chemical energy to the production of ATP and the reduction of NAD and FAD. In each step of the citric acid cycle (also known as the Krebs cycle) a glucose metabolite is oxidized while one of the carrier molecules, NAD or FAD, is reduced. Enzymes, nature s chemical catalysts, do a remarkable job of coupling the oxidation and reduction reactions so that energy is transferred with great efficiency. [Pg.808]

Figure 16.6 MECHANISM Mechanism of the electrophilic hydroxylation of p-hydroxyphenyl acetate, by reaction with FAD hydroperoxide. The hydroxyiating species is an "0H+ equivalent that arises by protonation of FAD hydroperoxide, RO-OH + H+ — ROH -+ 0H+. Figure 16.6 MECHANISM Mechanism of the electrophilic hydroxylation of p-hydroxyphenyl acetate, by reaction with FAD hydroperoxide. The hydroxyiating species is an "0H+ equivalent that arises by protonation of FAD hydroperoxide, RO-OH + H+ — ROH -+ 0H+.
One suggested mechanism is that the reaction may take place by a conjugate hydride-transfer mechanism, analogous to what occurs during alcohol oxidations with NAD+. Electrons on the enolate ion might expel a (3 hydride ion, which could add to the doubly bonded NS nitrogen on FAD. Protonation of the intermediate at N1 would give the product. [Pg.1135]

As a rule, the anabolic pathway by which a substance is made is not the reverse of the catabolic pathway by which the same substance is degraded. The two paths must differ in some respects for both to be energetically favorable. Thus, the y3-oxidation pathway for converting fatty acids into acetyl CoA and the biosynthesis of fatty acids from acetyl CoA are related but are not exact opposites. Differences include the identity of the acvl-group carrier, the stereochemistry of the / -hydroxyacyl reaction intermediate, and the identity of the redox coenzyme. FAD is used to introduce a double bond in jS-oxidalion, while NADPH is used to reduce the double bond in fatty-acid biosynthesis. [Pg.1138]

As its name implies, the citric acid cycle is a closed loop of reactions in which the product of the hnal step (oxaloacetate) is a reactant in the first step. The intermediates are constantly regenerated and flow continuously through the cycle, which operates as long as the oxidizing coenzymes NAD+ and FAD are available. To meet this condition, the reduced coenzymes NADH and FADH2 must be reoxidized via the electron-transport chain, which in turn relies on oxygen as the ultimate electron acceptor. Thus, the cycle is dependent on the availability of oxygen and on the operation of the electron-transport chain. [Pg.1154]


See other pages where FAD reactions is mentioned: [Pg.325]    [Pg.630]    [Pg.325]    [Pg.630]    [Pg.176]    [Pg.2503]    [Pg.40]    [Pg.45]    [Pg.26]    [Pg.44]    [Pg.79]    [Pg.80]    [Pg.591]    [Pg.648]    [Pg.654]    [Pg.654]    [Pg.655]    [Pg.706]    [Pg.784]    [Pg.796]    [Pg.82]    [Pg.153]    [Pg.808]    [Pg.553]    [Pg.1043]    [Pg.1085]    [Pg.1134]    [Pg.1158]    [Pg.1170]   
See also in sourсe #XX -- [ Pg.1134 ]

See also in sourсe #XX -- [ Pg.1134 ]

See also in sourсe #XX -- [ Pg.948 ]

See also in sourсe #XX -- [ Pg.1163 ]




SEARCH



FAD

© 2024 chempedia.info